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Abstract

A general geometrical transformation of the coordinates and of the displacement field is proposed; it is used to con-
vert any boundary value problem for a linear elastic body into another one with different geometry, elastic moduli and
boundary conditions. With this method, new problems, especially for inhomogeneous anisotropic bodies, may be solved
by use of solutions of simpler ones. After a derivation of sufficient conditions to be fulfilled by such a transformation,
the case of a linear homogeneous transformation is investigated in more detail. It is shown that a number of situations
exist for which the transformed problem has a known analytical solution which can be used to derive the solution of the
original problem straightforwardly. Special attention is paid to Saint-Venant-type anisotropy and to the derivation of
the Green function for an infinite or a semi-infinite body.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods for transforming complex problems into simpler ones have been frequently developed in var-
ious fields of mechanics and physics. For linear elasticity, which is considered here, most of them rely on a
transformation of the coordinates, either linear or nonlinear. More recently, the simultaneous transforma-
tion of mechanical variables, such as the displacement field, has been also proposed.

Linear transformations of the coordinates have been used to convert the physical study of the response
of anisotropic bodies into the resolution of isotropic problems. For thermal, hydraulic or chemical

" Corresponding author. Tel.: +33 14043 5263; fax: +33 14043 6516.
E-mail addresses: pouya@lcpe.fr (A. Pouya), zaoui@lms.polytechnique.fr (A. Zaoui).

0020-7683/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.06.046


mailto:pouya@lcpc.fr
mailto:zaoui@lms.polytechnique.fr

4938 A. Pouya, A. Zaoui | International Journal of Solids and Structures 43 (2006) 49374956

diffusion, a flux is created by the gradient of some scalar potential and the local constitutive equations in-
volve a second-order conductivity tensor. For example, this method has been intensively used for the inves-
tigation of the hydraulic diffusion in media with an anisotropic permeability (Castany, 1967; Magnan,
2000). Anisotropic elasticity problems, which make use of a fourth-order tensor for the moduli or the com-
pliances, are more complex and cannot be converted by the same method into problems of elastic isotropy
in the general case (see below). Nevertheless, specific situations, such as plane problems, can be addressed
and simplified with respect to the geometry or to the anisotropy (Green and Zerna, 1954; Alphutova et al.,
1995): for instance, Green and Zerna have used complex variables to define stress potentials for an aniso-
tropic infinite body with a symmetry plane and a circular hole loaded on its boundary and, thanks to a
change of variables in the complex plane, to extend this solution to the case of an elliptic hole.

Nonlinear coordinate transformations have also been considered for the resolution of some elasticity
problems. Lekhnitskii (1963) has addressed the torsion problem for a symmetric body around its symmetry
axis and shown that, for some types of anisotropy, the stress potentials can be derived from that found for
the isotropic case. The used transformation is linear with respect to the cylindric coordinates  and z and
then nonlinear with respect to cartesian coordinates. Neither Green—Zerna’s nor Lekhnitskii’s transforma-
tions can be extended directly to general three-dimensional situations. The same comment holds for the
conformal transformation which is used in perfect fluid mechanics in association with the complex potential
method.

A linear transformation of both the coordinates and the displacement field which leads to the modifica-
tion of the geometry and the elastic anisotropy has also been used for the investigation of Eshelby’s inclu-
sion problem or for the prediction of the response of heterogeneous elastic media. With this method,
Milgrom and Shtrikman (1992) have generalized some results related to the elastic energy of the inclusion
and suggested that the Eshelby tensor could also be calculated. Milton (2002) succeeded in generalizing
some homogenization results for thermal properties; for instance, an adequate transformation of both
the coordinates and the flux can lead to a new problem with isotropic behavior. Nevertheless these contri-
butions, which are restricted to zero volume forces and tractions on the boundary, do not derive from any
more general systematic transformation method.

A more systematic approach has been proposed by Pouya (2000). With help of a linear transformation
of the coordinates and of the displacement field, the boundary value problem of an elastic body with arbi-
trary geometry and regular boundary conditions is converted into another one, with different geometry and
anisotropy. This transformation has then been used, independently of the above mentioned methods, to
extend classical solutions for the Eshelby and for the Green isotropic problems to specific classes of anisot-
ropy; it has also been applied by Pouya and Reiffsteck (2003) to the resolution of the problem of founda-
tions in anisotropic elastic soils. Nevertheless it is restricted to homogeneous media since it derives from a
linear transformation of the coordinates.

In this paper, we propose an extension of this approach by considering a nonlinear transformation of the
coordinates and of the displacement field. The conditions for which the transformed boundary value prob-
lem still refers to an anisotropic elastic body are derived and discussed. Sufficient conditions are exhibited
which contain the Pouya (2000) transformation as a special case; this case is then investigated in more detail
with application to several problems, including the derivation of Green functions, for Saint-Venant-type
anisotropy.

2. Notation

In what follows, light-face (Greek or Latin) letters denote scalars; underlined letters designate vectors
and bold-face letters, second-order tensors; outline letters are reserved for fourth-order tensors. The con-
vention of summation on repeated indices is used implicitly.
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The tensor product of two vectors is labelled as ¢ ® b and defined as follows for cartesian coordinates:
(a ® b);; = a;b;. The inner product of two vectors is labelled as a - b = a;b;, the inner product of two second-
order tensors as a: b = a;b;;, the product of two second-order tensors by a - b with (a - b); = a;bi;. The
operation of a second-order tensor @ on a vector z is labelled as a - n, (a - n); = a;n; when a fourth-order
tensor C is acting on a second-order tensor a, one has (C : a),.]. = Cyuay. The Euclidian norm is labelled
as ||| with ||C|| = \/CyxCiirs- The tensor transposed from a is denoted a'.

The completely antisymmetric Levi—Civita tensor is denoted ¢; with the components:

e;x = 1 if i, j, k is an even permutation of 1,2,3,
ejx = —11f i, j, k is an odd permutation of 1,2,3,
e;x = 0 otherwise.

The external product of two vectors is denoted as (a A b); = €;aby.
The determinant of second-order tensors is labelled as ||; |a| = €;€pmnijmasn.
We also note: (VE)U = aju,-, V- u= @iu,», (V/\g), = Cy'kajUk,(V . a)j = Giaij.

3. The transformation procedure
3.1. The initial problem

A linear elastic body Q, with the regular boundary 0Q and the moduli C(x), is subjected to volume forces
F(x), to prescribed tractions 7(x) on one part 972 of the boundary and to prescribed displacements U(x) on
its complement 05 (Fig. 1a). The moduli C have the usual symmetry properties which read in an ortho-
normal basis (e, e, €3)

Vi,j,k,l;  Ci = Ciyix = Cjitg = Crayj (1)
and C is positive definite, i.e.,
Ve symmetric and e #0; &:C:e>0 (2)

The resulting displacement field u(x) obeys the equilibrium equations and the boundary conditions, taking
account of the constitutive equations:

Vxe 2 V-[C(x):Vul)]+FEx)=0 3)
Vx € 0rQ;  [C(x) : Vu(x)] - n(x) = T(x) (4)
Vx € 0uQ;  u(x) = Ulx) (5)

where n(x) is the unit outward normal to Q at x € 0Q.

(a) (b)

Fig. 1. The initial (a) and transformed (b) boundary value problems.
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The associated variational formulation consists in finding u(x) obeying u(x) = U(x) on 0y which min-
imizes the potential energy:

A[g]:%/Vg:C:ngQ—/E~ng—/ T-udS (6)
Q Q orQ

For sufficiently smooth functions, the variation of A[u] associated to a small variation w of u, namely
w(x) = du(x), which is given by

SA[g,M:/Vg:C:deQ—/E-v_de—/ T-wdS (7)
Q Q 070

must then vanish
Vs {Vx € 0uQ, w(x) = 0} = 8A[u, w] =0 (8)

3.2. The transformation

We consider a transformation defined on both x and u(x) independently:
=) 9)

u(x) = Q) - (%) (10)

where we assume that Q(x) and ¢(x) can be inverted. Let Q and 3Q be the transformed domain and bound-
ary for the space variable ¥. We are looking for the conditions to be fulfilled by ¢(x) and Q(x) for the trans-
formed displacement field (%) to be the solution of some boundary value problem for an elastic body Q
with adequate moduli (Fig. 1b). Referring to (7), this will require the transformed functional of 6A[u, w]
to have a similar expression, say dA (i, w), with respect to the transformed fields #(¥) and w(x).

With evident notation and from classical results on the effect of a change of variables, the unit outward
normal to 0, say i(%), is given by

(%) = k(X)R™' (x) - n(x) (11)
where the tensor R(x), whose inverse R™'(x) is supposed to exist, and the scalar x (x) are defined by
R(x) = [Vo(x)]" (12)

or more explicitly R;(x) = 0,p/x), and
x €02 K =R n@| (13)

The transformed line, surface and volume elements are related to the initial ones by dx =
R" -dx,dQ =JdQ and dS = Jk~'dS, respectively, with

J(x) = |R(x)| (14)

Since w(x) is arbitrary (with w(x) =0, Vx € 0yQ) in the variational Eq. (8), we can correlate w(x) and w(%)
through any invertible second-order tensor M(x) instead of Q(x). Referring to the last two terms of (7), we
conclude that

/Ev_vdfz:/Ev_vdé (15)
Q Q

/ Zde:/NT@dE (16)
orQ orQ
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with
F(E)=J'M"(x) F(x) (17)
T(E) =7 "'kM"(x) - I(x) (18)
w(x) = M(x) - 5(®) (19)

In view of the coming analysis, the transformation of the first term of (7) can be performed more con-
veniently by using two sets of auxiliary displacement fields, say é(' (x) and C m) (x), m=1,2,3, defined by

£ = 0w e, W) =M e 20

where (e;, e,, e3) are the three vectors of an orthonormal basis. Auxiliary stress fields £(x), £'™ (x) and
body forces F(x), F'™ (x) can then be associated to these displacement fields through the definitions

»m — . V§<m>, E(m) —_V. ):("0’ Ym — - Vé'(m), E/(m) — _Vy.Yym (21)
We also note

A(mn) _
With the notation

Bitt; = (0,0, )it + O, Rip 0l

A/lmn) — y(n) é(r")7 X(W!) — glmn) _ g/(mn) (22)

). g
(- ) = L (1), we get: 9;(-) = R;;0;(-). Consequently, we have the relations

3 (23)
0w, = (OxMin) Wy + MinRiy 0 W,
and then
Vu:C:Vw
= (0,0;,) Cijut (0xM 10 )ity W + 9, CijaM100;ttn O W, + (8:0,,,) Cijt M in 1t O3 Wy
+ Qjmci/'k/(alen)a‘amwn
=F". é it 0, + Q) CijtaM 10,1 O3, + V. [A m umwn] X/({m")6kﬂmﬁ;n (24)

The vector field ™ can now be decomposed into its gradient and rotational parts, namely

2 = AP (e, 7™ = 0™ + 0™ (25)
With help of the relation €;0;,(-) = 0, the last term in (24) now reads

1" B, = Op "Dyt 0, + Oiler PV it ) — €15y PV Oyt O
so that (24) becomes

Vu:C:Vw=[F" . &g, — "™ Vit, W, + DipnOittn 00y + V.{[A"™ 1t — P A Vit i} (26)
with

Dinin = Oy CijtaMin — € 'f’,(mn) (27)

Integration of (26) then leads, by taking account of w =0 on 0,€ and after some reduction, to

/Vg:Csz_de
Q

— / [EM - W, — ™ - i, I, dQ + / (4" &, — Y A Vi) - nw, dS
Q

rQ

+ / C g Oplin O, A Q (28)
Q
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with

Cmpnq = J_lDimlmRikaq (29)

where we can also write
/ C g Opli O, dQ = / Vii: C:ViwdQ (30)
o Q
Finally, by transferring (15), (16), (28) and (30) into (7), we find

SA[u, w) = / [E™ . &0, — ™ Vi, |w, dQ + / (4", — Y A Vi, - niv, dS
Q

- orQ

+/VQ:@:?@d§—/E-@d§—/~T-V_vd§ (31)
Q Q orQ

Note that the change of coordinates has not been performed completely in (31) (# and w only have been
transformed and the two first integrals still depend on x): this will make some of the following derivations
easier.

3.3. The transformed problem

In order to ensure the nature of the transformed problem to be the same as that of the original one, i.e.,
an elastic boundary value problem, we have now to assign 6A(u, w), as given by (31), to be, like in (7), the
sum of a symmetric bilinear form for Vi and Vi, with C obeying (1) and (2), integrated over Q, and of two
linear forms for w, with coefficients independent of #, integrated on Q and 8;Q, namely

S/K(g,@:/vg:(:;wdé—/i@d?)—/i@ds (32)
Q Q orQ

The condition u(x) = U(x) on 0yQ2 has been transformed into (%) = U(%) on 0yQ with U(x) =
O(x) - U(%). Since M(x) is invertible, (%) vanishes on € d,Q as soon as w(x) does so on 9. The var-
iational Eq. (8) is then equivalent to

Vi (Vi € 9y Q, (%) = 0} = 3A[, W] = 0 (33)

So, in order to solve the initial problem, it will be equivalent to do so for the transformed one by deriving
the solution #(¥) from the variational Eq. (33), with &(X) = U(X) on 0y Q: from that, the solution u(x) of the
initial problem will be derived through the inverse transformation. As it is well known, this method is
equivalent to the direct resolution of the field equations

Vi€ 0rQ; [C@): V)] i) = I(%) (34)
Vi€ dyQ; a(x) =U@

{vzefz; V.[C() : Vi) + FE) =0

~

Let us now focus on the derivation of sufficient conditions for the considered transformation to be
admissible. This can be done by making the two first integrals in (31) vanish for any u, with C, defined
by (29), obeying (1) and (2). These conditions first imply

Vm,n, Yx € Q; F™.&"W =0, vy =0 (35)
Vm,n, Vx € 07Q; A™ .n=0, nA¥P™ =0 (36)
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Since M~! exists, §'<") are three independent vectors; so, according to the first condition in (35), F™ =0,
Similarly, the first condition in (36) implies 7" = £ - n = 0 on 0;€. The second condition in (35) leads
to

X(mn) =V /\z(mn) (37)

which implies that V - ™ = 0. Since we can write

Ty = ) g ) )y g o)y = ) g

due to the symmetry of C and to the condition F™” =0, we must have F'*" - §"’> = 0, which implies
F'™ =0 (since Q is invertible). Conditions (35) and (36) can then be replaced by

Vm, Vxe Q;, F™ =0, F™ =0 (38)
Vm,n, Vx € 0;Q; E™.p=0, nA¥P"™ =0 (39)

In addition, C must obey (1) and (2). As for the symmetry conditions, namely

Vm,n,p,q, Vx € Q5 Cppng = 6mpqn = 6?’"”‘/ = Enqmp (40)
we can first notice that, according to the definition (29), the diagonal symmetry condition, i.e., E'mp,,q =
C ugmp» needs

Vi,k,m,n, ¥x € Q;  Diwiy = Dinim (41)

or equivalently

Vik,mon, Vx € @ CiwtQuMin — 0uM ;) = e[ + ¥ (42)
If this relation is obeyed, the property Cppmg = Cpmmg Would result from the condition C,ypmy = Coypga. From
(29), this condition reduces to

Vi,qg,m,n, ¥x € Q;  DipuRig = DinegRin (43)
Finally, according to (2), C must be positive definite.

So, a whole set of sufficient conditions for the proposed transformation, defined by Q(x) and ¢(x)
according to (9) and (10), to be admissible is the following:

e to choose the invertible tensor field Q(x) in such a way that the three displacement fields é(”’) (x) =
O(x) - e,, can satisfy the equations

Vx€Q; V- [C:VE™ =0, VYxecdrQ; [C:VEM] . n=0 (44)

e to find an invertible tensor field M(x) such that the associated displacement fields &™) (x) = M(x) - ¢,
obey
Vie Q@ V-[C:VE¢M =0 (45)
e this ensures that 3™ = [C : VEM] L E [T vEM] L E™ s a rotational field, i.e., that there exists
vector fields g(’”"’ such that Z(’”") =V A P"™): we have then to choose one such vector field P,
obeying
Vx €07Q; nAYP™ =0 (46)

e with D defined by (27), to choose the vector field ¢(x) so that, with R;; = 0,¢p;, (42) and (43) are verified
and C, defined by (29), is positive definite.
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Note that if M(x) is chosen as M(x) = gQ(x) with ¢ a constant, (45) is satisfied as soon as Q(x) obeys the
first condition (44); we also have 3™ = —y" and if ¥ is chosen antisymmetric too, (42) is satisfied
automatically. The condition to be satisfied by ¢ and Q would in this case reduce to (44), (46), (44) and
definite positivity of C. Conversely, it can be shown that if the tensor C defined by

Cijt = (Cijus + Crjur) /2 (47)
is definite, i.e., satisfies
C:a=0=a=0 (48)

for any symmetric second-order tensor @, which occurs especially for isotropic moduli C, then M(x) neces-
sarily must have the form M(x) = ¢Q(x) with ¢ a constant (see Appendix A).

Finally, we cannot certify at the moment that the above conditions, though they are the softest we have
been able to find, are the most general ones (i.e., both sufficient and necessary) for the transformation
defined by (9) and (10) to transform an elastic boundary value problem into another one. Further investi-
gations on this point, as well as on extended applications of the proposed method to arbitrary anisotropic
heterogeneous bodies are still in progress. In what follows, we focus on the particular case of homogeneous
transformations and Saint-Venant-type anisotropy.

4. Homogeneous transformations
4.1. A simple transformation

A simple example of transformation obeying the conditions derived hereabove can be given by choosing
0 as a constant (invertible) tensor. This corresponds to constant ¢™ vectors and to 2" = 0; M = ¢Q is

constant too with ¢ =|Q|. Thus, ¥ can be taken as zero and o(x) = Q" -x. So, R=Q. With
P =(R")"", relations (9) and (10) now read

x=P-Xx
u(x) = Q- u(x) (49)
Q= (P")"
The transformation Egs. (29), (17) and (18) reduce to
Conpg = C10n 010y 0sy (50)
FE)=0" Fk), T(E=xQ"-Tk), x=|P" nl" (51)

The strain and stress fields of the original and transformed problems are linked by the relations

§x) =P -e(x)-P, &(%)=0Q"-o(x)-Q (52)
and the transformation proposed initially by Pouya (2000) is recovered.

Note that Eq. (50) has been used by Olver (1988) in order to reduce the number of canonical elastic mod-
uli; he also showed that this equation cannot transform an arbitrary type of anisotropy into isotropy. As
mentioned in the Introduction, special applications of this transformation in the case of zero volume forces
and boundary tractions, so defined by (49), (50) and (52) have been developed by Milgrom and Shtrikman
(1992) or by Milton (2002).

Let us stress the fact that, in general, (49) does not reduce to a change of coordinates since x and u do not
transform in the same way. If P is orthogonal (i.e., P = (P")™!), then Q = P: the transformation is degen-
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erated into a change of orthonormal basis and the constitutive behavior is unchanged. In the general case, P
can be written as P= T - S, where T is orthogonal and § is symmetric. The total transformation can be
decomposed into two operations: the first one, defined by 7, transforms (x, ©) into (x’, #’) and the second
one, defined by S, transforms (x', u) into (%, &):

x=T-X=T-S-x
u=T-u=T-S"a

The transformation T does not lead to any new results; so we can restrict ourselves to transformations
defined by symmetric, positive definite matrices S. Two main preliminary questions must be addressed in
view of definite applications: the transformation of the geometry and boundary conditions on the one hand
and the nature of the anisotropy of the elastic moduli on the other hand.

4.2. Preliminary analysis

4.2.1. Geometry and boundary conditions

In the following, we consider only problems with a geometry which is invariant or belongs to a family
which is invariant under a linear transformation of the coordinates: the Green tensors for an infinite or a
semi-infinite body, the ellipsoidal inclusion in an infinite matrix, etc.

4.2.1.1. The inclusion problem. The transformation (49) has been applied to the inclusion problem by Mil-
grom and Shtrikman (1992) and, independently, to the inhomogeneous inclusion problem by Pouya (2000).
For this case, a bounded elastic inhomogeneity Q, with the regular boundary 02, the elastic moduli C'" and
the (possibly nonuniform) eigenstrain &° is perfectly embedded in an infinite matrix .# with the moduli C.
The eigenstrain &° is supposed to derive from the displacement field #°, defined in Q, and the matrix .# is
subjected to the uniform strain E* at infinity. The unknown displacement fields " in Q and u'® in .# obey
the following conditions:

Vre @  Clloulu (x) — ud(x)] =0

Vxe s Clduu (x) =0

vx €02 u(x) = u®(x) (53)
Vx € 02 n(x)Cldiluf” (x) — ul ()] = ny(x) Clp0u” (x)

lim [ (x) — E7x] =0

sl =00

This problem can be transformed according to (49) through the invertible tensor P operating on x, u'" and
u®. The transformed displacement fields #'" (%) and #'? (%) obey the same (53) with the transformed moduli
<[~3<1) and @(2) derived £rom C" and C? by relations similar to (50) and with the conditions #° = PT - 4° or
=P . Pand E =P'-E>.P. When Q is an ellipsoid and &° is uniform in it, it is well known that

&1 the strain field in the inclusion, is uniform too and is a linear function of &°. If, in addition, C") = ¢
and E°° = 0, the solution reads
g =8F.¢ (54)

where S” is the “Eshelby tensor” (1957). The solution of tl;e transformed problem has the same properties
and, according to (50), the transformed Eshelby tensor S is connected with S* by (Pouya, 2000)

~E
St = StrpaPriPrjOp Qi (55)

ijkl mnpq
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Note that S” and §E not only correspond to different moduli but also to different inclusion shapes: if the
ellipsoid surface 0Q is defined by x - H- x = 1, with H a symmetric, positive definite second-order tensor,
the boundary of the transformed inclusion is given by ¥ - P* - H - P - ¥ = 1. The Eshelby tensor has a known
closed form expression for isotropy (Eshelby, 1957) and transverse isotropy (Kneer, 1965; Mura, 1982).

Thanks to (55), this can be extended, as illustrated below, to more general symmetries for which @<2>,
instead of C'?, is isotropic or transversely isotropic.

This transformation can also be used in order to transform the ellipsoidal shape of the inclusion into a
spherical one: P has to be such that P* - H- P = R, with I the second-order unity tensor and R the sphere
radius. This may be useful in cases when C is arbitrary: for instance, the numerical method based on the
Fourier transform (Mura, 1982) can be simplified in this way and it is no more necessary to deal with spher-
ical and ellipsoidal inclusions separately, as in Mura (1982).

4.2.1.2. Green functions. A similar treatment can be applied to the derivation of the Green tensor G(x, x’)
which, for an elastic body, correlates the displacement field u(x) generated by a point force F(x)=
¢6(x — x') applied at x’ to this force:

ulx) = G(x,x') - ¢ (56)

The P-transformed problem is that of an elastic body with a modified geometry and the moduli C given by
(50), subjected, according to (51), to the force density

FE@ =P "' Fx)=P" ¢dx—x)= P[P $5(x — %) = ¢p3(¥ — ¥) (57)

with ¢ = |P~'|[P™" - ¢. The resulting displacement field it(¥) = P" - u(x) leads, through the definition (56)
applied to the transformed Green tensor G(%,%'), to the relation

G(%,¥)=|PIP" G(x,x)- P (58)
For an infinite body, the geometry is not modified by the transformation: if G (x,X') can be calculated in
closed form, (58) gives access to G(x, x'). Note that in that case both G and G depend on (X — X') only.
For a semi-infinite body defined by x - n > 0 with n the outward unit normal to the plane boundary, the

geometrical transformation also involves a rotation: the transformed body is the half space defined by
-N > 0 with N = P" - n. Here again, (58) makes the derivation of G possible as soon as G is known.

4.2.2. Anisotropy
The proposed transformation can then be used in order to extend known solutions for isotropic or trans-
verse isotropic elasticity toward more general situations.

4.2.2.1. Transformed isotropy. The question to be answered is: which must be the symmetry of the initial
moduli so that the transformed ones are isotropic? According to (50), which can be inverted into

Cijti = PinP jnPipP1g Crinpg (59)
and with isotropic moduli C expressed as a function of Lamé coefficients A and u

Counpg = 20 + (OpOug + SungOup) (60)
the initial moduli C must read (Milgrom and Shtrikman, 1992; Pouya, 2000'):

Cyu = ADyDy + w(DaDj; + DyDy), D =P-P" (61)

! Note that in Pouya (2000) a misprint has unfortunately changed Dj; into Py
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The anisotropy of these moduli is a special case of orthotropy: an eigenbasis of D is an orthotropy basis for
C. In such a basis, with d, (x = 1,2, 3) the (positive) eigenvalues of D, a, = v/d,, ¢y, = (A + 2u)(a,)* (without
summation on «) and 5 = A/(A + 2u), the 6 X 6 matrix of the elastic moduli for C, in the Voight’s notation,
reads, according to (61)

[cn N4y/C11€22  N4/C11C33 |
(&)) N4/C22C33
€33
Til 1—n
[C]" = 7 Vencs (62)
T-n
3 C11C33
l—n
T\/Cnczz
With the notation
(x=1,2,3) E,= wa)",  v=272/[2(4+ w)] (63)
At
the compliance matrix can be written as
_ i _y _y _
E1 E1E2 \/E1E3
—v i —v
\/E]Ez E2 \/E2E3
—v —v 1
™ | VEIEy VEE;  E3
IS]™ = 2(1 +v) (64)
VELE;
2(1+v)
VE3E,
2(1+v)
L VEE, |

This special case of anisotropy depends on four independent parameters only, namely (¢, ¢22, €33, ) OF
(E\, E», E3, v). Itis referred as TrI (transformed isotropy) in the diagram of Fig. 3. Conversely, if the moduli
or compliances of a given material can be written in the form (62) or (64), the tensor C must have the form
(61): as a matter of fact, from (¢, ¢22, ¢33, 77), one can define (¢ = 1,2,3, no summation on o)

p=c(l—=n)/2, i=2u/(1=n), a,= (cw/c)”* (65)
where ¢ is an arbitrary positive constant, or, from (E;, E», E3, v),
w=E/R(1+v)], A=Ev/[1+v)(1=-2v)], a,=(E,/E)"* (66)

where E is an arbitrary positive constant. If P is, in the orthotropy basis, the diagonal tensor with eigen-
values a,, and D = P- P", the tensor C reads as in (61) and then it is transformed by P into an isotropic
tensor.

Note that this special case of orthotropy, as defined by (62) or (64), has already been considered by de
Saint Venant (1863). Let the modulus and compliance along the direction n be defined by

cn)=n®n):C:(n®@n), 1/Em)=n®n):S:(n®n)



4948 A. Pouya, A. Zaoui | International Journal of Solids and Structures 43 (2006) 49374956

respectively; de Saint-Venant was concerned with elastic materials for which, in spherical coordinates (r, n),
either the surface r(n) = V/E(n) or r(n) = (V/c(n))”" has an ellipsoidal shape (these classes of anisotropy
are denoted SV1 and SV2, respectively, in the diagram of Fig. 3). He found that this is the case for both
these surfaces for materials defined by (62) or (64), so that we can say that Trl =SV1 N SV2. Though it
does not correspond to any crystal lattice, this kind of symmetry has the advantage of exhibiting in a simple
way three different Young moduli along three orthogonal directions: this property suits well with the elastic
properties of various amorphous materials as well as some rocks, soils or cracked solids. Note that the com-
position of several such transformations does not give access to different kinds of anisotropy.

If 2 of the 3 Young moduli (E;, E», E3) are equal, say E; = E», we are left with a special case of transverse
isotropy (denoted TITrI, transverse isotropic transformed isotropy, in the diagram of Fig. 3), depending on
3 parameters only (E}, E;, v) instead of 5 (E|, Es, vi2, V13, f13). In this case, we have vi; = v, vi3 = v\/E| /E3
(which means /vi3v3; = v) and u;3 = /E E3/[2(1 4 v)]; the compliance matrix reads

Tl —v —v
E. E VEE
-y 1 —v
Ey E; EE;3
-y —v 1
S| = E\E3 EE; E; (67)
2(1+v)
VE E3
2(1+v)
E\Es
2(1+v)
L E,
and according to the last equation of (66), the P-transformation reduces to
1 1/4
TITH E;
[P] = | , a= (E_1> (68)
a

From the decomposition of any vector J into its transverse and axial components, say V' = Vy+ V3 e,
with V- e3 = 0, this transformation operates on x, u, and the volume and surface forces F and T according
to the relations

ET:ET
Fs=4Fs (69)

~ ~ -1
Ty =xTy, I =505, ()= (Val+m+an)

Xr = Xr, Ur = Uur,

> 1 A
X3 = ;X3, us = aus,

4.2.2.2. Transformed transverse isotropy. The foregoing analysis can be extended to transverse isotropic
transformed moduli C, along the axis n; let b;, i = 1 to 5, the five corresponding independent parameters:

Cijpi = 5100k + b2 (0401 + 010 ) + b3 (dymeny + dpnin;)
+ b4(5,—kl’ljl’l/ + 5,—1nknj + 5]/{11,1’1/ + 5j1nkn,-) + b5n,-njnkn, (70)
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With the axis x; along n, the stiffness matrix reads as the following where the values denoted by a star (*)
derive from the other values by symmetry relations:

(¢ ¢ Ci3 i
iz Cii €13
~ Ci3 Ci3 C33 .. 01—
[C] = - ) Ce6 — T~ (71)
Cy4
Cas
L Co6
with
{511 = by +2b,, ¢ = by, Ci3 =by + b3 (72)
C33 = by +2by + 2b3 +4bs + bs, Cas = by + by
With use of (49) and (50), the corresponding general form for C is found to be
Cijit = b1D;;Dyy + by(DyDj; + DyDjy)
+ b3 (Di,NkN/ + Dk,N,-Nj)b4(D,-kNjN/ +DyNN;+DyN;N; + Dj,NkN,-) + bsN;N NN, (73)

with D =P - P" and N = P - n. For given eigendirections of D, we can choose 3 eigenvalues for D, 2 angles
for the direction n and 4 independent parameters b, to bs (b can be chosen with D). This shows that C
depends on 9 independent parameters (plus 3 additional parameters for possible rotations of eigendirec-
tions of D). This class of symmetry is denoted TrTI (transformed transverse isotropy) in the diagram of
Fig. 3 below. According to our approach, it could be considered as an extension of Saint-Venant’s anisot-
ropy, Trl.

Special attention is paid now to the case when n is an eigendirection for D. Let (e1, e, ¢3), with e3 = n, be
an eigenbasis of D and d, (« = 1,2, 3) its eigenvalues. The P tensor is diagonal in this basis with the eigen-
values a, = v/d,. As long as the class of symmetry of C only, which is not modified by multiplication by a
scalar, is concerned, P can be chosen such that |P| = 1. In addition, any stretching along e; does not change
the property of transverse isotropy around e; so that a3 can be fixed as 1 without restriction. The eigen-
values of P are then a; = a, a, = a~ ' and 1. The associated C tensor is then orthotropic with a 6 X 6 matrix
which reads

[ci1 Cci2 ci3 T
c szc
) * =4/—C13
Cla € Cxp 23 a
C13 Cp €33
STrTI 23 : C11
(C] = Cis =, /—c¢ (74)
’ 55 — 44
Cyq (&))
Cs o = Venen = cn
66 — >
C*
L 66_
with
4~ 4~ ~ ~ 2 -2~
Cip =acy, Cp=a €, C€33=C3, Cp=C, C3=4adC3, Ci4=0a Cy (75)

This matrix depends on 6 independent parameters (¢, ¢22, €33, C12, €13, C44). The corresponding model is
named STrTI (symmetric transformed transverse isotropy) in the diagram of Fig. 3.
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Conversely, if the stiffness matrix has the form (74) in the basis (¢, ¢, €3), P can be chosen diagonal in
this basis with the eigenvalues a; =a, a» =a ', a3 =1 and

a= () (76)

The P-transformed tensor of C, say C, then exhibits transverse isotropy around e; and its stiffness matrix
reads as (71) with the relations

Ci1 = 4/C11Cxn, €33 =0C33, Ci2 =Cia, C13 =+/C13C03, Cas = \/C4Css (77)

4.2.2.3. Approximation of real elastic materials. The above defined models can be used as good enough
approximations for various materials, including crystalline ones, and then yield convenient approximate
analytical solutions for some problems such as the search of Green functions (see below). In view of these
applications, we discuss now approximations which can be performed for a number of crystals. The elastic
stiffness of such crystals are reported in Table 1, as well as the approximations performed according to some
of the above proposed models (namely models Trl and STrTI, as well as the reference of transverse iso-
tropy). The reported approximations C*""" of the measured moduli C™ have been obtained by minimi-
zation of the distance |[C*P™ — CM||. The last row of the table indicates the relative error, namely
[CAPPr — €M) /||CM|. The first 3 crystals are orthorhombic, with 9 independent parameters, the three others
are transversely isotropic with 5 independent parameters. Of course, the approximation obtained with the
STrTI model (6 parameters) is always better than the one deriving from the approximation of transverse
isotropy (5 parameters).

Table 1
Elastic stiffnesses for a set of crystals (Dieulesaint and Royer, 1974) and their approximation by several anisotropic models
C,y (10" N/m?) Err. (%)
€11 €22 €33 Ca4 Css C66 €12 €13 €23
KB;s0g4-4H,0 5.82 3.59 2.55 1.64 0.463 0.57 2.29 1.74 2.31 -
Model Trl 5.346 3.818 2.806 0.738 0.874 1.019 2.479 2.125 1.796 25289
Trans. isotropy 4.388 4.388 2.550 1.052 1.052 0.889 2.609 1.025 1.025 26167
Model STrTI 5.112 3.794 2.550 0.933 1.083 0.895 2.615 2.141 1.844 24195
S 2.40 2.05 4.83 0.43 .87 .76 1.33 1.71 1.59 -
Model Trl 2.519 2.011 4.710 0.725 0.811 530 1.190 1.822 1.627 11158
Trans. isotropy 2.381 2.381 4.830 0.650 0.650 .604 1.174 1.650 1.650 .11059
Model STrTI 2.619 2.134 4.830 0.626 0.693 0.598 1.168 1.733 1.564 .09572
BaSO, 8.8 7.81 10.4 1.17 2.79 2.55 4.77 2.69 2.89 -
Model Trl 8.975 7.446 9.294 2.374 2.606 2.333 3.509 3.921 3.571 .19480
Trans. isotropy 8.696 8.696 10.400 1.979 1.979 2.159 4.379 2.790 2.790 13472
Model STrTI 9.419 7.957 10.400 1.919 2.088 2.146 4.366 2.898 2.664 12249
BaTiO; 16.8 16.8 18.9 5.46 5.46 4.49 7.82 7.10 7.10 -
Model Trl 16.828 16.828 18.920 5.206 5.206 4910 7.008 7.431 7.431 .04364
Zn 16.1 16.1 6.10 3.83 3.83 6.34 342 5.01 5.01 -
Model Trl 16.407 16.407 7.340 3.815 3.815 5.704 4.999 3.343 3.343 .14248
Co 30.7 30.7 35.81 7.53 7.53 7.10 16.5 10.30 10.30 -
Model Trl 29.322 29.322 33.281 8.750 8.750 8.213 12.896 13.739 1.739 14471

For each crystal, the measured moduli CM according to the quoted reference are reported on the first line whereas different
approximations CAPP" are reported on the other lines with the associated relative error (||CAPP" — CM||/||CM||) indicated in the last row.
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It is interesting to note that, for some cases (e.g. for Potassium pentaborate KBsOg-4H,0), the error
attached to the Trl model (4 parameters) is lower than that coming from use of a transverse isotropic
approximation (5 parameters). For some transverse isotropic materials (e.g. for Barium titanate BaTiO3),
the Trl model yields a very low error (~4%). Taking account of the experimental uncertainty, it can be
more convenient to use for it the Green function derived for the Trl model (see below) which looks simpler
than the one attached to transverse isotropic.

5. New analytical derivation of Green functions

In this section, we give closed form expressions of the Green tensor for an infinite or semi-infinite med-
ium for the Trl model (transformed from isotropy, see (62) or (64)).

5.1. Infinite medium
The elastic moduli C are given by (61) with D = P- PT symmetric and positive definite. The P-trans-

formed moduli C are isotropic, with Lamé coefficients A and . The Green—Kelvin tensor for an infinite
body with such moduli is known to be

A 1 5i/ 1 A e o
G,-j()_C—)_C) 47'5,[1{”5(7—%/” 4(1 —V) aUH)_C )_C“} (78)

with v = 4/[2(A + )] and 3;(-) = 2 (-). By replacing in (78) %, ¥ and G by their expression from (49) and

0X;

(58), with 3;(-) = R;j0,(-), R = (P") ™', 8;(-) = P;;0:(-) and p(x) = vx - H -x, H= D", we find (Pouya, 2000)

e — _\/THT Hij _ 1 olx —x'
Gl./(— 7) - 47'[‘11 {p()_C 7)_C/) 4(1 o V) al/p(f )} (79)

If D has two identical eigenvalues (TITrI model (67)), a special case of transverse isotropy is obtained.
Eq. (79) specified for this case is consistent with the general expression of the Green tensor for transverse
isotropy given by Pan and Chou (1976), except for a mistake in this expression: the second member of Eq.
(18) in Pan and Chou (1976) must be multiplied by (c1/c33)".

5.2. Semi-infinite body

The case of isotropy has been solved by Mindlin (1936). We could use this solution for an extension,
thanks to (58), to moduli C given by (61). Nevertheless, Mindlin’s solution is usually given (Mindlin,
1936; Mura, 1982; Bonnet, 1995) in a specific basis, with one direction normal to the plane boundary,
whereas, since we are interested with anisotropic elasticity, we need an intrinsic general expression. It
can be obtained with help of the following notation:

E=x-n &=x-n X=x-x, R=|X|, R =(R+4&)" (80)

with n the unit outward normal to the isotropic half-space with Poisson’s ratio v. Then, according to Mura
(1982) , Mindlin’s solution reads

G(x,x)

X)) = AL+ X DX+ A X @0+ Ain @ X + Asn @ 1] (81)
167pu(l —v)

with I the second-order unit tensor and the definitions
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y _3—4v+i R%—R% 4(1 —v)(1 —2v)
""" R R 2R Ry+E+¢
3—4y 1 6EE  4(1—v)(1-2v)
4, = 3 D3 D5 5 p L 2 a2
Ry Rl R RR+E&4E)
1282 4(1 —v)(1 —2v) ,
Ay = - Ry +2
TR Rz(Rz+é+§’)2( 2+ 20) (82)
12¢6%  4(1 —v)(1 —2v)
Ay = — Ry +2
! R; Rz(R2+f+f,)2( 2420
4(1 —v)(1 —2v) L, o 8EE(1—2v) 24827
As=—— 2~ IR 4
5 RZ(RZ%%,)Q[ HW(E+ )+ 4L+ X + &

Let now the anisotropic half-space with the moduli (61) of the TrI model be defined by x - n > 0. It is trans-
formed by the tensor P such that P- P* = D into an isotropic half-space with the normal 7 transformed
fromnby = ||P"-n ||71PT -n. Note that P can be chosen symmetric. The associated Green tensor G is
then given by formulae (80)—(82) which depend on X, x' and 7. By use of (58) where x, X' and 7 are known
functions of x, x/ and n, the expected Green tensor G is obtained. It reads

VIH
G(x,x) = Wllv)[BlHJrBzH- (X®X) -H+xB:H - (X®n)+kBy(n®X) - H+ *Bs(n®n)]

(83)
where we have put

{VZi/[2(7~+u)}» k=(n-D-n) '

84

Ri=vX HX, &=wx-n & =xxn R=R>+45E)" &
with H= D', and where the parameters B; are defined from (R}, R;, &, &",v) in the same way as A; were
defined from (R, R», &, &', v) in (82).

Now again, we can focus on the particular case of the TITrI model (67) for which the symmetry axis is
normal to the plane boundary: this situation frequently occurs in soil mechanics for foundations problems
with different vertical and horizontal moduli for the soil. According to experimental data given by Boehler
(1975) , the TITrI model is well suited to the elastic anisotropy of various soils (Pouya and Reiffsteck, 2003).
The proposed transformation then reduces to the simple Egs. (69) and can be conveniently used for extend-
ing known solutions of foundation problems for isotropic soils to media exhibiting this kind of anisotropy.
These problems usually make recourse to Boussinesq’s (1885) solution which is concerned with the special
case of Mindlin’s solution for a point force Wesz applied on the plane boundary in the normal direction,
where ¢; is also a symmetry axis for the anisotropy defined by (Ej, Es, v) according to (67).
With a = (E3/E1)1/ 4. the transformation defined by (69), (68) and (52) of the classical Boussinesq’s solution
(Johnson, 1992) yields the solution of the Boussinesq problem for the considered anisotropy. Note that Wis
transformed as F in (69), namely # = ¥ /a. In cylindrical coordinates of axis es (see Fig. 2a), and with the
notation

R=va*r*+z22
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V4

A 4 ;l H iw
E, . Es.v 2‘1 i R
3

(@) (b)

Fig. 2. (a) Point force on an infinite soil for the TITrI model; (b) rigid circular footing on an infinite soil for the TITrI model.

this solution reads

w200 —-v) 2 Wa [ (1=2v)r 1z
= [T P T = |- T
drnpa | R R? dnu| R(R+z) R
3w ;7 Wal[ 1l-2v 3z z
_ 32 _ma O 85
3w W =2v)al:z 1
7T g YR 2n R* R(R+2)

The displacement field for a number of foundation problems in anisotropic soils with the properties (67)
can be easily derived from this basic solution. In addition, many results can be derived from the direct
transformation of known results for isotropic soils. For instance, the vertical displacement w of a rigid cir-
cular footing (Fig. 2b) for a half-space with the elastic properties (67) is derived directly through (69) from
the classical Boussinesq result for isotropic soils, namely

w1 —v?) -
W=z PR (86)
and reads
EN\ Y m (1 -7
= (=) = R
w <E1> 2L p (87)

with E = E|: this is due to the fact that the transformation does not change the geometry of the problem
(half-space and circular footing with invariant radius) and leads to w = aw, k = 1/a and p = p/a’. Note that
a number of other similar problems, e.g. the solution for a trapezoidal embankment (Gray, 1936), which
derive from the basic Boussinesq solution, can be generalized in this way too.

5.3. Further extensions

All the above mentioned models of elastic anisotropy are reported in the diagram of Fig. 3 where each
model located at some level is a generalization of the models situated beneath. Ellipses bordered with a thin
line indicate cases for which the Green functions are already known whereas a thick border correspond to
cases for which it has been or can be derived through the proposed transformation. Dashed lines indicate
cases which cannot be correlated with those at a lower level by a linear transformation so that the Green
function cannot be derived in the same way.

Note that the number of parameters indicated on the diagram of Fig. 3 does not integrate the 3
rotational degrees of freedom (2 for axial symmetry cases) which should be added to the former (e.g. 12
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TrTI
9p

STrTl,6p
C11, C22, C33, C12, C13, Ca4

Trl,4p
Cy1, C22, C33, M
El y Ez y E3 , V

I, 5p
Ci1, Cs3, C12, C13, Caa

C12=MCi1, Ci3= n(<]:1121033)”2
E:=E C13=[(1-1)/2] (C11C33)

TITrl, 3p
C11, C33, M

Eu, Es,v

,2p

Ci, N
Ei,v

Fig. 3. Diagram showing different anisotropic models and their mutual relations (SV1: \/E(n) is ellipsoidal; SV2: /c(n) is ellipsoidal;
Trl: transformed isotropy, SV1 N SV2; I: isotropy; TI: transverse isotropy; TrTI: transformed TI; STrTI: symmetric transformed TI;
TITrl: transverse isotropic transformed isotropy, Trl N TT).

parameters instead of 9 for the TrTI model) in view of comparison with the maximum 21 parameters when
no symmetry is present.

6. Other extensions and conclusion

In view of illustrating the potential applicability of the proposed transformation, we have concentrated
on problems for which the geometry is invariant (point force in an infinite) or belongs to an invariant geom-
etry family (semi-infinite body). Another interesting domain of application is concerned with the general
solutions of the equilibrium equations for elasticity such as the solutions for stress or strain potentials
for which no geometrical aspect is present (Lamé’s potential or Galerkine’s, Papkovich’s (1932) and
Neuber’s (1934) solutions for isotropy, etc.).

Besides the ellipsoidal inclusion problem in an infinite medium, several isotropic solutions can be ex-
tended to anisotropy in a similar way, such as the point force in a layered medium (Benitez and Rosakis’s,
1987)or in one of the two joined semi-infinite solids (Rongved’s, 1955), or as the torsion of a cone
(Timoshenko, 1934; Lekhnitskii, 1963, p. 341) or the application of an axial compressive force on the apex
of a cone (Lekhnitskii, 1963, p. 383), etc. Nevertheless, for the latter case, in order to save the axial sym-
metry, the transformation must be restricted to an affinity along the cone axis and then to anisotropy of the
form (67). In addition to foundation problems for soil mechanics which have been illustrated above, we can
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also mention that the calculation of stress intensity factors for cracks in anisotropic media can be per-
formed with the same method (work in progress).
Two more conclusions can be drawn in view of further advances:

¢ we have mainly developed a particular simple solution of the general equations for the transformation of
an elastic boundary value problem into another one, namely linear transformations of the coordinates
and displacements. Many other applications are likely to be open for more general transformations,
including inhomogeneous ones. These possibilities still remain to be explored;

o the general form (9) and (10) of the considered transformations is a local one. Even in the restricted
framework of linear transformations, nonlocal (e.g. integral) formulations could have been considered
as well: this would have probably enlarged the finding of admissible transformations.

Appendix A. Relation between M and Q

This appendix refers to the end of Section 3, related to the connection which can exist between tensors M
and Q. Let us first notice that for every C, the tensor C defined by (47) has the symmetries Cyj; =
Ciij = Crijt = Cju, but is not always definite, i.e., it does not satisfy (48) necessarily. For instance, if C is
defined by ¢j1 = ¢2n = ¢33 = €44 = €55 = cg6 = ¢ > 0, with all the other coefficients equal to zero, it is easy
to check that C is not definite. When C is isotropic, C is definite: as a matter of fact, if /2 and p are the Lamé
constants of C, then C is isotropic with Lamé constants 4 = p and i = (4 + u)/2, and the inequalities u > 0
and 34+ 2u > 0 which express that C is definite imply also that & > 0 and 3/ + 2 > 0.

Let us now suppose that C is such that C is definite. The right side of (42) is antisymmetric with respect to

(i, k) and the same property must hold for the left side; so:

a'kjl [Qijln - anMjm] =0 (A1)
Since C is definite, (A.1) implies
Qijlﬂ - anMfm + Q[me” - Q_ianm =0 (Az)

Multiplying both sides of (A.2) by (Q"),; leads to

M, = (1/3)(MQ™),0,, (A3)
This means that M is proportional to Q. So we can write
M(x) = q(x)O(x) (A4)

Substitution of this expression of M in (42) shows that the left side of (42) vanishes and then that ¥ must
be antisymmetric with respect to (m, n). The same property holds for its rotational. According to (37) and
(22):

V A ¥ (mn) = l(mn) — y(m .é’(") _ Y 'é(m) (A.5)
Substitution of (A.4) in (20) and (21) leads to:

é’(ﬂ) — qé(")7 ) — qE(”) +C: (Vg ®§(ﬂ)) (A.6)
so that (A.5) reads

VA = {g(E" - £ —EM . &)} {[C: (V@ &) £ (A7)
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In (A.7), the first term between { } is antisymmetric in (m, n). For the whole expression to be antisymmetric,
the second term between {} must be antisymmetric too. So

[C:(Vg® ™)™ +[C: (Vg ™) - =0 (A8)
or, equivalently

Cit1 0%q(0,,, O + 01, 0) =0 (A9)
Multiplication of both sides by (Qfl)mp(Qfl)np leads to

I Vg=0 (A.10)

with I'y. = Cj,y,,. Since I' is well known to be symmetric and positive definite, (A.10) implies Vg =0, i.e., g
constant and so: Vx € Q, M(x) = qQ(x).
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