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Abstract

A general geometrical transformation of the coordinates and of the displacement field is proposed; it is used to con-
vert any boundary value problem for a linear elastic body into another one with different geometry, elastic moduli and
boundary conditions. With this method, new problems, especially for inhomogeneous anisotropic bodies, may be solved
by use of solutions of simpler ones. After a derivation of sufficient conditions to be fulfilled by such a transformation,
the case of a linear homogeneous transformation is investigated in more detail. It is shown that a number of situations
exist for which the transformed problem has a known analytical solution which can be used to derive the solution of the
original problem straightforwardly. Special attention is paid to Saint-Venant-type anisotropy and to the derivation of
the Green function for an infinite or a semi-infinite body.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods for transforming complex problems into simpler ones have been frequently developed in var-
ious fields of mechanics and physics. For linear elasticity, which is considered here, most of them rely on a
transformation of the coordinates, either linear or nonlinear. More recently, the simultaneous transforma-
tion of mechanical variables, such as the displacement field, has been also proposed.

Linear transformations of the coordinates have been used to convert the physical study of the response
of anisotropic bodies into the resolution of isotropic problems. For thermal, hydraulic or chemical
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diffusion, a flux is created by the gradient of some scalar potential and the local constitutive equations in-
volve a second-order conductivity tensor. For example, this method has been intensively used for the inves-
tigation of the hydraulic diffusion in media with an anisotropic permeability (Castany, 1967; Magnan,
2000). Anisotropic elasticity problems, which make use of a fourth-order tensor for the moduli or the com-
pliances, are more complex and cannot be converted by the same method into problems of elastic isotropy
in the general case (see below). Nevertheless, specific situations, such as plane problems, can be addressed
and simplified with respect to the geometry or to the anisotropy (Green and Zerna, 1954; Alphutova et al.,
1995): for instance, Green and Zerna have used complex variables to define stress potentials for an aniso-
tropic infinite body with a symmetry plane and a circular hole loaded on its boundary and, thanks to a
change of variables in the complex plane, to extend this solution to the case of an elliptic hole.

Nonlinear coordinate transformations have also been considered for the resolution of some elasticity
problems. Lekhnitskii (1963) has addressed the torsion problem for a symmetric body around its symmetry
axis and shown that, for some types of anisotropy, the stress potentials can be derived from that found for
the isotropic case. The used transformation is linear with respect to the cylindric coordinates r and z and
then nonlinear with respect to cartesian coordinates. Neither Green–Zerna�s nor Lekhnitskii�s transforma-
tions can be extended directly to general three-dimensional situations. The same comment holds for the
conformal transformation which is used in perfect fluid mechanics in association with the complex potential
method.

A linear transformation of both the coordinates and the displacement field which leads to the modifica-
tion of the geometry and the elastic anisotropy has also been used for the investigation of Eshelby�s inclu-
sion problem or for the prediction of the response of heterogeneous elastic media. With this method,
Milgrom and Shtrikman (1992) have generalized some results related to the elastic energy of the inclusion
and suggested that the Eshelby tensor could also be calculated. Milton (2002) succeeded in generalizing
some homogenization results for thermal properties; for instance, an adequate transformation of both
the coordinates and the flux can lead to a new problem with isotropic behavior. Nevertheless these contri-
butions, which are restricted to zero volume forces and tractions on the boundary, do not derive from any
more general systematic transformation method.

A more systematic approach has been proposed by Pouya (2000). With help of a linear transformation
of the coordinates and of the displacement field, the boundary value problem of an elastic body with arbi-
trary geometry and regular boundary conditions is converted into another one, with different geometry and
anisotropy. This transformation has then been used, independently of the above mentioned methods, to
extend classical solutions for the Eshelby and for the Green isotropic problems to specific classes of anisot-
ropy; it has also been applied by Pouya and Reiffsteck (2003) to the resolution of the problem of founda-
tions in anisotropic elastic soils. Nevertheless it is restricted to homogeneous media since it derives from a
linear transformation of the coordinates.

In this paper, we propose an extension of this approach by considering a nonlinear transformation of the
coordinates and of the displacement field. The conditions for which the transformed boundary value prob-
lem still refers to an anisotropic elastic body are derived and discussed. Sufficient conditions are exhibited
which contain the Pouya (2000) transformation as a special case; this case is then investigated in more detail
with application to several problems, including the derivation of Green functions, for Saint-Venant-type
anisotropy.
2. Notation

In what follows, light-face (Greek or Latin) letters denote scalars; underlined letters designate vectors
and bold-face letters, second-order tensors; outline letters are reserved for fourth-order tensors. The con-
vention of summation on repeated indices is used implicitly.
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The tensor product of two vectors is labelled as a � b and defined as follows for cartesian coordinates:
(a � b)ij = aibj. The inner product of two vectors is labelled as a Æ b = aibi, the inner product of two second-
order tensors as a : b = aijbij, the product of two second-order tensors by a Æ b with (a Æ b)ij = aikbkj. The
operation of a second-order tensor a on a vector n is labelled as a Æ n, (a Æ n)i = aijnj; when a fourth-order
tensor C is acting on a second-order tensor a, one has ðC : aÞij ¼ Cijklakl. The Euclidian norm is labelled
as kÆk with kCk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CijklCijkl

p
. The tensor transposed from a is denoted aT.

The completely antisymmetric Levi–Civita tensor is denoted �ijk with the components:

�ijk = 1 if i, j, k is an even permutation of 1,2,3,
�ijk = �1 if i, j, k is an odd permutation of 1,2,3,
�ijk = 0 otherwise.

The external product of two vectors is denoted as (a ^ b)i = �ijkajbk.
The determinant of second-order tensors is labelled as jÆj; jaj = �ijk�lmnailajmakn.
We also note: ($u)ij = ojui, $ Æ u = oiui, ($^u)i = �ijkojuk,($ Æ a)j = oiaij.
3. The transformation procedure

3.1. The initial problem

A linear elastic body X, with the regular boundary oX and the moduli CðxÞ, is subjected to volume forces
F(x), to prescribed tractions T(x) on one part oTX of the boundary and to prescribed displacements U(x) on
its complement oUX (Fig. 1a). The moduli C have the usual symmetry properties which read in an ortho-
normal basis (e1, e2, e3)
8i; j; k; l; Cijkl ¼ Cijlk ¼ Cjikl ¼ Cklij ð1Þ

and C is positive definite, i.e.,
8e symmetric and e 6¼ 0; e : C : e > 0 ð2Þ

The resulting displacement field u(x) obeys the equilibrium equations and the boundary conditions, taking
account of the constitutive equations:
8x 2 X; r � ½CðxÞ : $uðxÞ� þ F ðxÞ ¼ 0 ð3Þ
8x 2 oT X; ½CðxÞ : $uðxÞ� � nðxÞ ¼ T ðxÞ ð4Þ
8x 2 oUX; uðxÞ ¼ UðxÞ ð5Þ
where n(x) is the unit outward normal to X at x 2 oX.
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Fig. 1. The initial (a) and transformed (b) boundary value problems.
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The associated variational formulation consists in finding u(x) obeying u(x) = U(x) on oUX which min-
imizes the potential energy:
A½u� ¼ 1

2

Z
X

$u : C : $u dX�
Z

X
F � udX�

Z
oT X

T � udS ð6Þ
For sufficiently smooth functions, the variation of A[u] associated to a small variation w of u, namely
w(x) = du(x), which is given by
dA½u;w� ¼
Z

X
$u : C : $wdX�

Z
X

F � wdX�
Z

oT X
T � wdS ð7Þ
must then vanish
8w; f8x 2 oUX;wðxÞ ¼ 0g ) dA½u;w� ¼ 0 ð8Þ
3.2. The transformation

We consider a transformation defined on both x and u(x) independently:
~x ¼ uðxÞ ð9Þ
uðxÞ ¼ QðxÞ � ~uð~xÞ ð10Þ
where we assume that Q(x) and uðxÞ can be inverted. Let eX and ~oeX be the transformed domain and bound-
ary for the space variable ~x. We are looking for the conditions to be fulfilled by uðxÞ and Q(x) for the trans-
formed displacement field ~uð~xÞ to be the solution of some boundary value problem for an elastic body eX
with adequate moduli (Fig. 1b). Referring to (7), this will require the transformed functional of dA[u, w]
to have a similar expression, say deAð~u; ~wÞ, with respect to the transformed fields ~uð~xÞ and ~wð~xÞ.

With evident notation and from classical results on the effect of a change of variables, the unit outward
normal to ~oeX, say ~nð~xÞ, is given by
~nð~xÞ ¼ jðxÞR�1ðxÞ � nðxÞ ð11Þ
where the tensor R(x), whose inverse R�1(x) is supposed to exist, and the scalar j (x) are defined by
RðxÞ ¼ ½$uðxÞ�T ð12Þ
or more explicitly Rij(x) = oiuj(x), and
x 2 oT X; jðxÞ ¼ kR�1ðxÞ � nðxÞk�1 ð13Þ

The transformed line, surface and volume elements are related to the initial ones by d~x ¼

RT � dx; deX ¼ J dX and deS ¼ Jj�1 dS, respectively, with
JðxÞ ¼ jRðxÞj ð14Þ

Since w(x) is arbitrary (with w(x) = 0, "x 2 oUX) in the variational Eq. (8), we can correlate w(x) and ~wð~xÞ
through any invertible second-order tensor M(x) instead of Q(x). Referring to the last two terms of (7), we
conclude that
Z

X
F � wdX ¼

Z
~X

eF � ~wdeX ð15ÞZ
oT X

T � wdS ¼
Z

~oT ~X

eT � ~wdeS ð16Þ
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with
 eF ð~xÞ ¼ J�1MTðxÞ � F ðxÞ ð17ÞeT ð~xÞ ¼ J�1jMTðxÞ � T ðxÞ ð18Þ
wðxÞ ¼MðxÞ � ~wð~xÞ ð19Þ
In view of the coming analysis, the transformation of the first term of (7) can be performed more con-
veniently by using two sets of auxiliary displacement fields, say nðmÞðxÞ and n0ðmÞðxÞ, m = 1,2,3, defined by
nðmÞðxÞ ¼ QðxÞ � em n0ðmÞðxÞ ¼MðxÞ � em ð20Þ

where (e1, e2, e3) are the three vectors of an orthonormal basis. Auxiliary stress fields R(m)(x), R0ðmÞðxÞ and
body forces F(m)(x), F 0ðmÞðxÞ can then be associated to these displacement fields through the definitions
RðmÞ ¼ C : $nðmÞ; F ðmÞ ¼ �$ � RðmÞ; R0ðmÞ ¼ C : $n0ðmÞ; F 0ðmÞ ¼ �$ � R0ðmÞ ð21Þ
We also note
AðmnÞ ¼ RðmÞ � n0ðnÞ; A0ðmnÞ ¼ R0ðnÞ � nðmÞ; vðmnÞ ¼ AðmnÞ � A0ðmnÞ ð22Þ

With the notation ~oið�Þ ¼ o

o~xi
ð�Þ, we get: oið�Þ ¼ Rij

~ojð�Þ. Consequently, we have the relations
oiuj ¼ ðoiQjmÞ~um þ QjmRip
~op~um

okwl ¼ ðokM lnÞ~wn þM lnRkq
~oq ~wn

ð23Þ
and then
$u : C : $w

¼ ðoiQjmÞCijklðokM lnÞ~um ~wn þ QjmCijklM lnoi~umok ~wn þ ðoiQjmÞCijklM ln~umok ~wn

þ QjmCijklðokM lnÞoi~um ~wn

¼ F ðmÞ � n0ðnÞ~um ~wn þ QjmCijklM lnoi~umok ~wn þ $:½AðmnÞ~um ~wn� � vðmnÞ
k ok~um ~wn ð24Þ
The vector field vðmnÞ can now be decomposed into its gradient and rotational parts, namely
vðmnÞ ¼ rwðmnÞ þ r ^WðmnÞ ði:e:; vðmnÞ
k ¼ okw

ðmnÞ þ �kijoiW
ðmnÞ
j Þ ð25Þ
With help of the relation �kijoki(Æ) = 0, the last term in (24) now reads
vðmnÞ
k ok~um ~wn ¼ okw

ðmnÞok~um ~wn þ oi½�kijW
ðmnÞ
j ok~um ~wn� � �kijW

ðmnÞ
j ok~umoi ~wn
so that (24) becomes
$u : C : $w ¼ ½F ðmÞ � n0ðnÞ~um �rwðmnÞ:$~um�~wn þ Dimknoi~umok ~wn þ $:f½AðmnÞ~um �WðmnÞ ^ $~um�~wng ð26Þ

with
Dimkn ¼ QjmCijklM ln � �kijW
ðmnÞ
j ð27Þ
Integration of (26) then leads, by taking account of w = 0 on oUX and after some reduction, to
Z
X

$u : C : $wdX

¼
Z

X
½F ðmÞ � n0ðnÞ~um �rwðmnÞ � r~um�~wn dXþ

Z
oT X
½AðmnÞ~um �WðmnÞ ^ $~um� � n~wn dS

þ
Z

~X

eCmpnq
~op~um

~oq ~wn deX ð28Þ
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with
eCmpnq ¼ J�1DimknRipRkq ð29Þ

where we can also write
Z

~X

eCmpnq
~op~um

~oq ~wn deX ¼ Z
X

~$~u : eC : ~$~wdeX ð30Þ
Finally, by transferring (15), (16), (28) and (30) into (7), we find
dA½u;w� ¼
Z

X
½F ðmÞ � n0ðnÞ~um �rwðmnÞ:$~um�~wn dXþ

Z
oT X
½AðmnÞ~um �WðmnÞ ^ $~um� � n~wn dS

þ
Z

~X

~$~u : eC : ~$~wdeX � Z
~X

eF � ~wdeX � Z
oT ~X

eT � ~wdeS ð31Þ
Note that the change of coordinates has not been performed completely in (31) (u and w only have been
transformed and the two first integrals still depend on x): this will make some of the following derivations
easier.

3.3. The transformed problem

In order to ensure the nature of the transformed problem to be the same as that of the original one, i.e.,
an elastic boundary value problem, we have now to assign dA(u, w), as given by (31), to be, like in (7), the
sum of a symmetric bilinear form for ~$~u and ~$~w, with eC obeying (1) and (2), integrated over eX, and of two
linear forms for ~w, with coefficients independent of ~u, integrated on eX and ~oT

eX, namely
deAð~u; ~wÞ ¼
Z

X

~$~u : eC : ~$~wdeX � Z
~X

eF � ~wdeX � Z
oT ~X

eT � ~wdeS ð32Þ
The condition u(x) = U(x) on oUX has been transformed into ~uð~xÞ ¼ eU ð~xÞ on ~oU
eX with UðxÞ ¼

QðxÞ � eU ð~xÞ. Since M(x) is invertible, ~wð~xÞ vanishes on ~x 2 ~oU
eX as soon as w(x) does so on oUX. The var-

iational Eq. (8) is then equivalent to
8~w; f8~x 2 ~oU
eX; ~wð~xÞ ¼ 0g ) deA½~u; ~w� ¼ 0 ð33Þ
So, in order to solve the initial problem, it will be equivalent to do so for the transformed one by deriving
the solution ~uð~xÞ from the variational Eq. (33), with ~uð~xÞ ¼ eU ð~xÞ on ~oU

eX: from that, the solution u(x) of the
initial problem will be derived through the inverse transformation. As it is well known, this method is
equivalent to the direct resolution of the field equations
8~x 2 eX; ~$:½eCð~xÞ : ~$~uðxÞ� þ eF ð~xÞ ¼ 0

8~x 2 ~oT
eX; ½eCð~xÞ : ~$~uðxÞ� � ~nð~xÞ ¼ eT ð~xÞ

(
8~x 2 ~oU

eX; ~uð~xÞ ¼ eU ð~xÞ ð34Þ
Let us now focus on the derivation of sufficient conditions for the considered transformation to be
admissible. This can be done by making the two first integrals in (31) vanish for any u, with eC, defined
by (29), obeying (1) and (2). These conditions first imply
8m; n; 8x 2 X; F ðmÞ � n0ðnÞ ¼ 0; rwðmnÞ ¼ 0 ð35Þ
8m; n; 8x 2 oT X; AðmnÞ � n ¼ 0; n ^WðmnÞ ¼ 0 ð36Þ
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Since M�1 exists, n0ðnÞ are three independent vectors; so, according to the first condition in (35), F(m) = 0.
Similarly, the first condition in (36) implies T(m) = R(m) Æ n = 0 on oTX. The second condition in (35) leads
to
vðmnÞ ¼ r ^WðmnÞ ð37Þ
which implies that r � vðmnÞ ¼ 0. Since we can write
r � vðmnÞ ¼ �F ðmÞ � n0ðnÞ þ F 0ðnÞ � nðmÞ þ RðmÞ : $n0ðnÞ � R0ðnÞ : $nðmÞ ¼ F 0ðnÞ � nðmÞ
due to the symmetry of C and to the condition F(m) = 0, we must have F 0ðnÞ � nðmÞ ¼ 0, which implies
F 0ðnÞ ¼ 0 (since Q is invertible). Conditions (35) and (36) can then be replaced by
8m; 8x 2 X; F ðmÞ ¼ 0; F 0ðmÞ ¼ 0 ð38Þ
8m; n; 8x 2 oT X; RðmÞ � n ¼ 0; n ^WðmnÞ ¼ 0 ð39Þ
In addition, eC must obey (1) and (2). As for the symmetry conditions, namely
8m; n; p; q; 8x 2 X; eCmpnq ¼ eCmpqn ¼ eCpmnq ¼ eCnqmp ð40Þ

we can first notice that, according to the definition (29), the diagonal symmetry condition, i.e., eCmpnq ¼eCnqmp, needs
8i; k;m; n; 8x 2 X; Dimkn ¼ Dknim ð41Þ

or equivalently
8i; k;m; n; 8x 2 X; Cijkl½QjmM ln � QlnMjm� ¼ �kij½WðnmÞ
j þWðmnÞ

j � ð42Þ
If this relation is obeyed, the property eCmpnq ¼ eCpmnq would result from the condition eCmpnq ¼ eCmpqn. From
(29), this condition reduces to
8i; q;m; n; 8x 2 X; DimknRkq ¼ DimkqRkn ð43Þ

Finally, according to (2), eC must be positive definite.

So, a whole set of sufficient conditions for the proposed transformation, defined by Q(x) and uðxÞ
according to (9) and (10), to be admissible is the following:

• to choose the invertible tensor field Q(x) in such a way that the three displacement fields nðmÞðxÞ ¼
QðxÞ � em can satisfy the equations
8x 2 X; r � ½C : $nðmÞ� ¼ 0; 8x 2 oT X; ½C : $nðmÞ� � n ¼ 0 ð44Þ
• to find an invertible tensor field M(x) such that the associated displacement fields n0ðmÞðxÞ ¼MðxÞ � em

obey
8x 2 X; r � ½C : $n0ðmÞ� ¼ 0 ð45Þ
• this ensures that vðmnÞ ¼ ½C : $nðmÞ� � n0ðnÞ � ½C : $n0ðnÞ� � nðmÞ is a rotational field, i.e., that there exists

vector fields W(mn) such that vðmnÞ ¼ r ^WðmnÞ; we have then to choose one such vector field W(mn),
obeying
8x 2 oT X; n ^WðmnÞ ¼ 0 ð46Þ

• with D defined by (27), to choose the vector field uðxÞ so that, with Rij = oiuj, (42) and (43) are verified

and eC, defined by (29), is positive definite.
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Note that if M(x) is chosen as M(x) = qQ(x) with q a constant, (45) is satisfied as soon as Q(x) obeys the
first condition (44); we also have vðmnÞ ¼ �vðnmÞ and if W(mn) is chosen antisymmetric too, (42) is satisfied
automatically. The condition to be satisfied by u and Q would in this case reduce to (44), (46), (44) and
definite positivity of eC. Conversely, it can be shown that if the tensor C defined by
Cikjl ¼ ðCijkl þ CkjilÞ=2 ð47Þ
is definite, i.e., satisfies
C : a ¼ 0) a ¼ 0 ð48Þ
for any symmetric second-order tensor a, which occurs especially for isotropic moduli C, then M(x) neces-
sarily must have the form M(x) = qQ(x) with q a constant (see Appendix A).

Finally, we cannot certify at the moment that the above conditions, though they are the softest we have
been able to find, are the most general ones (i.e., both sufficient and necessary) for the transformation
defined by (9) and (10) to transform an elastic boundary value problem into another one. Further investi-
gations on this point, as well as on extended applications of the proposed method to arbitrary anisotropic
heterogeneous bodies are still in progress. In what follows, we focus on the particular case of homogeneous
transformations and Saint-Venant-type anisotropy.
4. Homogeneous transformations

4.1. A simple transformation

A simple example of transformation obeying the conditions derived hereabove can be given by choosing
Q as a constant (invertible) tensor. This corresponds to constant nðmÞ vectors and to R(m) = 0; M = qQ is
constant too with q = jQj. Thus, W(mn) can be taken as zero and uðxÞ ¼ QT � x. So, R = Q. With
P = (RT)�1, relations (9) and (10) now read
x ¼ P � ~x
uðxÞ ¼ Q � ~uð~xÞ
Q ¼ ðPTÞ�1

8><>: ð49Þ
The transformation Eqs. (29), (17) and (18) reduce to
eCmnpq ¼ CijklQimQjnQkpQlq ð50ÞeF ð~xÞ ¼ QT � F ðxÞ; eT ð~xÞ ¼ jQT � T ðxÞ; j ¼ kPT � nk�1 ð51Þ
The strain and stress fields of the original and transformed problems are linked by the relations
~eð~xÞ ¼ PT � eðxÞ � P; ~rð~xÞ ¼ QT � rðxÞ �Q ð52Þ

and the transformation proposed initially by Pouya (2000) is recovered.

Note that Eq. (50) has been used by Olver (1988) in order to reduce the number of canonical elastic mod-
uli; he also showed that this equation cannot transform an arbitrary type of anisotropy into isotropy. As
mentioned in the Introduction, special applications of this transformation in the case of zero volume forces
and boundary tractions, so defined by (49), (50) and (52) have been developed by Milgrom and Shtrikman
(1992) or by Milton (2002).

Let us stress the fact that, in general, (49) does not reduce to a change of coordinates since x and u do not
transform in the same way. If P is orthogonal (i.e., P = (PT)�1), then Q = P: the transformation is degen-
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erated into a change of orthonormal basis and the constitutive behavior is unchanged. In the general case, P
can be written as P = T Æ S, where T is orthogonal and S is symmetric. The total transformation can be
decomposed into two operations: the first one, defined by T, transforms (x, u) into (x 0, u 0) and the second
one, defined by S, transforms (x 0, u 0) into ð~x; ~uÞ:
x ¼ T � x0 ¼ T � S � ~x
u ¼ T � u0 ¼ T � S�1 � ~u
The transformation T does not lead to any new results; so we can restrict ourselves to transformations
defined by symmetric, positive definite matrices S. Two main preliminary questions must be addressed in
view of definite applications: the transformation of the geometry and boundary conditions on the one hand
and the nature of the anisotropy of the elastic moduli on the other hand.

4.2. Preliminary analysis

4.2.1. Geometry and boundary conditions
In the following, we consider only problems with a geometry which is invariant or belongs to a family

which is invariant under a linear transformation of the coordinates: the Green tensors for an infinite or a
semi-infinite body, the ellipsoidal inclusion in an infinite matrix, etc.

4.2.1.1. The inclusion problem. The transformation (49) has been applied to the inclusion problem by Mil-
grom and Shtrikman (1992) and, independently, to the inhomogeneous inclusion problem by Pouya (2000).
For this case, a bounded elastic inhomogeneity X, with the regular boundary oX, the elastic moduli Cð1Þ and
the (possibly nonuniform) eigenstrain e0 is perfectly embedded in an infinite matrix M with the moduli Cð2Þ.
The eigenstrain e0 is supposed to derive from the displacement field u0, defined in X, and the matrix M is
subjected to the uniform strain E1 at infinity. The unknown displacement fields u(1) in X and u(2) in M obey
the following conditions:
8x 2 X; Cð1Þijklojk½uð1Þl ðxÞ � u0
l ðxÞ� ¼ 0

8x 2M; Cð2Þijklojkuð2Þl ðxÞ ¼ 0

8x 2 oX; uð1ÞðxÞ ¼ uð2ÞðxÞ
8x 2 oX; njðxÞCð1Þijklok½uð1Þl ðxÞ � u0

l ðxÞ� ¼ njðxÞCð2Þijklokuð2Þl ðxÞ
lim
kxk!1

½uð2Þi ðxÞ � E1ij xj� ¼ 0

8>>>>>>>>><>>>>>>>>>:
ð53Þ
This problem can be transformed according to (49) through the invertible tensor P operating on x, u(1) and

u(2). The transformed displacement fields ~uð1Þð~xÞ and ~uð2Þð~xÞ obey the same (53) with the transformed modulieCð1Þ and eCð2Þ derived from Cð1Þ and Cð2Þ by relations similar to (50) and with the conditions ~u0 ¼ PT � u0 or
~e0 ¼ PT � e0 � P and eE1 ¼ PT � E1 � P. When X is an ellipsoid and e0 is uniform in it, it is well known that
e(1), the strain field in the inclusion, is uniform too and is a linear function of e0. If, in addition, Cð1Þ ¼ Cð2Þ

and E1 = 0, the solution reads
eð1Þ ¼ SE : e0 ð54Þ

where SE is the ‘‘Eshelby tensor’’ (1957). The solution of the transformed problem has the same properties

and, according to (50), the transformed Eshelby tensor eSE
is connected with SE by (Pouya, 2000)
eSE

ijkl ¼ SE
mnpqP miP njQpkQql ð55Þ
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Note that SE and eSE
not only correspond to different moduli but also to different inclusion shapes: if the

ellipsoid surface oX is defined by x Æ H Æ x = 1, with H a symmetric, positive definite second-order tensor,
the boundary of the transformed inclusion is given by ~x � PT �H � P � ~x ¼ 1. The Eshelby tensor has a known
closed form expression for isotropy (Eshelby, 1957) and transverse isotropy (Kneer, 1965; Mura, 1982).

Thanks to (55), this can be extended, as illustrated below, to more general symmetries for which eCð2Þ,
instead of Cð2Þ, is isotropic or transversely isotropic.

This transformation can also be used in order to transform the ellipsoidal shape of the inclusion into a
spherical one: P has to be such that PT Æ H Æ P = R�2I, with I the second-order unity tensor and R the sphere
radius. This may be useful in cases when C is arbitrary: for instance, the numerical method based on the
Fourier transform (Mura, 1982) can be simplified in this way and it is no more necessary to deal with spher-
ical and ellipsoidal inclusions separately, as in Mura (1982).

4.2.1.2. Green functions. A similar treatment can be applied to the derivation of the Green tensor G(x, x 0)
which, for an elastic body, correlates the displacement field u(x) generated by a point force F(x) =
/d(x � x 0) applied at x 0 to this force:
1 No
uðxÞ ¼ Gðx; x0Þ � / ð56Þ
The P-transformed problem is that of an elastic body with a modified geometry and the moduli eC given by
(50), subjected, according to (51), to the force density
eF ð~xÞ ¼ P�1 � F ðxÞ ¼ P�1 � /dðx� x0Þ ¼ jP�1jP�1 � /dð~x� ~x0Þ ¼ ~/dð~x� ~x0Þ ð57Þ
with ~/ ¼ jP�1jP�1 � /. The resulting displacement field ~uð~xÞ ¼ PT � uðxÞ leads, through the definition (56)
applied to the transformed Green tensor eGð~x;~x0Þ, to the relation
eG ð~x;~x0Þ ¼ jPjPT � Gðx; x0Þ � P ð58Þ

For an infinite body, the geometry is not modified by the transformation: if eG ð~x;~x0Þ can be calculated in

closed form, (58) gives access to G(x, x 0). Note that in that case both G and eG depend on ð~x� ~x0Þ only.
For a semi-infinite body defined by x Æ n P 0 with n the outward unit normal to the plane boundary, the
geometrical transformation also involves a rotation: the transformed body is the half space defined by
~x � eN P 0 with eN ¼ PT � n. Here again, (58) makes the derivation of G possible as soon as eG is known.

4.2.2. Anisotropy

The proposed transformation can then be used in order to extend known solutions for isotropic or trans-
verse isotropic elasticity toward more general situations.

4.2.2.1. Transformed isotropy. The question to be answered is: which must be the symmetry of the initial
moduli so that the transformed ones are isotropic? According to (50), which can be inverted into
Cijkl ¼ P imP jnP kpP lq
eCmnpq ð59Þ
and with isotropic moduli eC expressed as a function of Lamé coefficients k and l
eCmnpq ¼ kdmndpq þ lðdmpdnq þ dmqdnpÞ ð60Þ

the initial moduli C must read (Milgrom and Shtrikman, 1992; Pouya, 20001):
Cijkl ¼ kDijDkl þ lðDikDjl þ DilDjkÞ; D ¼ P � PT ð61Þ
te that in Pouya (2000) a misprint has unfortunately changed Dij into Pij.
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The anisotropy of these moduli is a special case of orthotropy: an eigenbasis of D is an orthotropy basis for
C. In such a basis, with da (a = 1,2,3) the (positive) eigenvalues of D, aa ¼

ffiffiffiffiffi
da

p
, caa = (k + 2l)(aa)4 (without

summation on a) and g = k/(k + 2l), the 6 · 6 matrix of the elastic moduli for C, in the Voight�s notation,
reads, according to (61)
½C �TrI ¼

c11 g
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22
p

g
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33
p

c22 g
ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33
p

c33

1� g
2

ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p

1� g
2

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33

p

1� g
2

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p

266666666666664

377777777777775
ð62Þ
With the notation
ða ¼ 1; 2; 3Þ Ea ¼
3kþ 2l
kþ l

lðaaÞ4; m ¼ k=½2ðkþ lÞ� ð63Þ
the compliance matrix can be written as
½S�TrI ¼

1

E1

�mffiffiffiffiffiffiffiffiffiffi
E1E2

p �mffiffiffiffiffiffiffiffiffiffi
E1E3

p

�mffiffiffiffiffiffiffiffiffiffi
E1E2

p 1

E2

�mffiffiffiffiffiffiffiffiffiffi
E2E3

p

�mffiffiffiffiffiffiffiffiffiffi
E1E3

p �mffiffiffiffiffiffiffiffiffiffi
E2E3

p 1

E3

2ð1þ mÞffiffiffiffiffiffiffiffiffiffi
E2E3

p

2ð1þ mÞffiffiffiffiffiffiffiffiffiffi
E3E1

p

2ð1þ mÞffiffiffiffiffiffiffiffiffiffi
E1E2

p

2666666666666666666664

3777777777777777777775

ð64Þ
This special case of anisotropy depends on four independent parameters only, namely (c11, c22, c33, g) or
(E1, E2, E3, m). It is referred as TrI (transformed isotropy) in the diagram of Fig. 3. Conversely, if the moduli
or compliances of a given material can be written in the form (62) or (64), the tensor C must have the form
(61): as a matter of fact, from (c11, c22, c33, g), one can define (a = 1,2,3, no summation on a)
l ¼ cð1� gÞ=2; k ¼ 2gl=ð1� gÞ; aa ¼ ðcaa=cÞ1=4 ð65Þ

where c is an arbitrary positive constant, or, from (E1, E2, E3, m),
l ¼ E=½2ð1þ mÞ�; k ¼ Em=½ð1þ mÞð1� 2mÞ�; aa ¼ ðEa=EÞ1=4 ð66Þ

where E is an arbitrary positive constant. If P is, in the orthotropy basis, the diagonal tensor with eigen-
values aa, and D = P Æ PT, the tensor C reads as in (61) and then it is transformed by P into an isotropic
tensor.

Note that this special case of orthotropy, as defined by (62) or (64), has already been considered by de
Saint Venant (1863). Let the modulus and compliance along the direction n be defined by
cðnÞ ¼ ðn� nÞ : C : ðn� nÞ; 1=EðnÞ ¼ ðn� nÞ : S : ðn� nÞ



4948 A. Pouya, A. Zaoui / International Journal of Solids and Structures 43 (2006) 4937–4956
respectively; de Saint-Venant was concerned with elastic materials for which, in spherical coordinates (r, n),
either the surface rðnÞ ¼

ffiffiffiffiffiffiffiffiffiffi
EðnÞ4

p
or rðnÞ ¼ ð

ffiffiffiffiffiffiffiffiffi
cðnÞ4

p
Þ�1 has an ellipsoidal shape (these classes of anisotropy

are denoted SV1 and SV2, respectively, in the diagram of Fig. 3). He found that this is the case for both
these surfaces for materials defined by (62) or (64), so that we can say that TrI = SV1 \ SV2. Though it
does not correspond to any crystal lattice, this kind of symmetry has the advantage of exhibiting in a simple
way three different Young moduli along three orthogonal directions: this property suits well with the elastic
properties of various amorphous materials as well as some rocks, soils or cracked solids. Note that the com-
position of several such transformations does not give access to different kinds of anisotropy.

If 2 of the 3 Young moduli (E1, E2, E3) are equal, say E1 = E2, we are left with a special case of transverse
isotropy (denoted TITrI, transverse isotropic transformed isotropy, in the diagram of Fig. 3), depending on
3 parameters only (E1, E3, m) instead of 5 (E1, E3, m12, m13, l13). In this case, we have m12 = m, m13 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1=E3

p
(which means

ffiffiffiffiffiffiffiffiffiffiffi
m13m31
p ¼ m) and l13 ¼

ffiffiffiffiffiffiffiffiffiffi
E1E3

p
=½2ð1þ mÞ�; the compliance matrix reads
½S�TITrI ¼

1

E1

�m
E1

�mffiffiffiffiffiffiffiffiffiffi
E1E3

p

�m
E1

1

E1

�mffiffiffiffiffiffiffiffiffiffi
E1E3

p

�mffiffiffiffiffiffiffiffiffiffi
E1E3

p �mffiffiffiffiffiffiffiffiffiffi
E1E3

p 1

E3

2ð1þ mÞffiffiffiffiffiffiffiffiffiffi
E1E3

p

2ð1þ mÞffiffiffiffiffiffiffiffiffiffi
E1E3

p

2ð1þ mÞ
E1

2666666666666666666666664

3777777777777777777777775

ð67Þ
and according to the last equation of (66), the P-transformation reduces to
½P�TITrI ¼
1

1

a

264
375; a ¼ E3

E1

� �1=4

ð68Þ
From the decomposition of any vector V into its transverse and axial components, say V = VT + V3 e3,
with VT Æ e3 = 0, this transformation operates on x, u, and the volume and surface forces F and T according
to the relations
~xT ¼ xT ; ~uT ¼ uT ; eF T ¼ F T

~x3 ¼ 1
a x3; ~u3 ¼ au3; eF 3 ¼ 1

a F 3eT T ¼ jT T ; eT 3 ¼ j
a T 3; jðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2 þ a2n2

3

p� ��1

8>>><>>>: ð69Þ
4.2.2.2. Transformed transverse isotropy. The foregoing analysis can be extended to transverse isotropic
transformed moduli ~C, along the axis n; let bi, i = 1 to 5, the five corresponding independent parameters:
eC ijkl ¼ b1dijdkl þ b2ðdikdjl þ dildjkÞ þ b3ðdijnknl þ dklninjÞ
þ b4ðdiknjnl þ dilnknj þ djkninl þ djlnkniÞ þ b5ninjnknl ð70Þ
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With the axis x3 along n, the stiffness matrix reads as the following where the values denoted by a star (*)
derive from the other values by symmetry relations:
½eC� ¼
~c11 ~c12 ~c13

~c12 ~c11 ~c13

~c13 ~c13 ~c33

~c44

~c44

~c�66

26666666664

37777777775
; ~c�66 ¼

~c11 � ~c12

2
ð71Þ
with
~c11 ¼ b1 þ 2b2; ~c12 ¼ b1; ~c13 ¼ b1 þ b3

~c33 ¼ b1 þ 2b2 þ 2b3 þ 4b4 þ b5; ~c44 ¼ b2 þ b4

�
ð72Þ
With use of (49) and (50), the corresponding general form for C is found to be
Cijkl ¼ b1DijDkl þ b2ðDikDjl þ DilDjkÞ
þ b3ðDijN kN l þ DklNiN jÞb4ðDikN jNl þ DilNkNj þ DjkNiN l þ DjlNkNiÞ þ b5NiN jN kN l ð73Þ
with D = P Æ PT and N = P Æ n. For given eigendirections of D, we can choose 3 eigenvalues for D, 2 angles
for the direction n and 4 independent parameters b2 to b5 (b1 can be chosen with D). This shows that C

depends on 9 independent parameters (plus 3 additional parameters for possible rotations of eigendirec-
tions of D). This class of symmetry is denoted TrTI (transformed transverse isotropy) in the diagram of
Fig. 3 below. According to our approach, it could be considered as an extension of Saint-Venant�s anisot-
ropy, TrI.

Special attention is paid now to the case when n is an eigendirection for D. Let (e1, e2, e3), with e3 = n, be
an eigenbasis of D and da (a = 1,2,3) its eigenvalues. The P tensor is diagonal in this basis with the eigen-
values aa ¼

ffiffiffiffiffi
da

p
. As long as the class of symmetry of C only, which is not modified by multiplication by a

scalar, is concerned, P can be chosen such that jPj = 1. In addition, any stretching along e3 does not change
the property of transverse isotropy around e3 so that a3 can be fixed as 1 without restriction. The eigen-
values of P are then a1 = a, a2 = a�1 and 1. The associated C tensor is then orthotropic with a 6 · 6 matrix
which reads
½C �STrTI ¼

c11 c12 c13

c12 c22 c�23

c13 c�23 c33

c44

c�55

c�66

26666666664

37777777775
;

c�23 ¼
ffiffiffiffiffiffi
c22

c11

r
c13

c�55 ¼
ffiffiffiffiffiffi
c11

c22

r
c44

c�66 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22
p � c12

2

ð74Þ
with
c11 ¼ a4~c11; c22 ¼ a�4~c11; c33 ¼ ~c33; c12 ¼ ~c12; c13 ¼ a2~c13; c44 ¼ a�2~c44 ð75Þ
This matrix depends on 6 independent parameters (c11, c22, c33, c12, c13, c44). The corresponding model is
named STrTI (symmetric transformed transverse isotropy) in the diagram of Fig. 3.
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Conversely, if the stiffness matrix has the form (74) in the basis (e1, e2, e3), P can be chosen diagonal in
this basis with the eigenvalues a1 = a, a2 = a�1, a3 = 1 and
Table
Elastic

KB5O
Model
Trans.
Model

S
Model
Trans.
Model

BaSO4

Model
Trans.
Model

BaTiO
Model

Zn
Model

Co
Model

For ea
approx
a ¼ c11

c22

� �1
8

ð76Þ
The P-transformed tensor of C, say eC, then exhibits transverse isotropy around e3 and its stiffness matrix
reads as (71) with the relations
~c11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p
; ~c33 ¼ c33; ~c12 ¼ c12; ~c13 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c13c23

p
; ~c44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c44c55

p ð77Þ
4.2.2.3. Approximation of real elastic materials. The above defined models can be used as good enough
approximations for various materials, including crystalline ones, and then yield convenient approximate
analytical solutions for some problems such as the search of Green functions (see below). In view of these
applications, we discuss now approximations which can be performed for a number of crystals. The elastic
stiffness of such crystals are reported in Table 1, as well as the approximations performed according to some
of the above proposed models (namely models TrI and STrTI, as well as the reference of transverse iso-
tropy). The reported approximations CAppr of the measured moduli CM have been obtained by minimi-
zation of the distance kCAppr � CMk. The last row of the table indicates the relative error, namely
kCAppr � CMk=kCMk. The first 3 crystals are orthorhombic, with 9 independent parameters, the three others
are transversely isotropic with 5 independent parameters. Of course, the approximation obtained with the
STrTI model (6 parameters) is always better than the one deriving from the approximation of transverse
isotropy (5 parameters).
1
stiffnesses for a set of crystals (Dieulesaint and Royer, 1974) and their approximation by several anisotropic models

Caa (1010 N/m2) Err. (%)

c11 c22 c33 c44 c55 c66 c12 c13 c23

8 Æ4H2O 5.82 3.59 2.55 1.64 0.463 0.57 2.29 1.74 2.31 –
TrI 5.346 3.818 2.806 0.738 0.874 1.019 2.479 2.125 1.796 .25289
isotropy 4.388 4.388 2.550 1.052 1.052 0.889 2.609 1.025 1.025 .26167
STrTI 5.112 3.794 2.550 0.933 1.083 0.895 2.615 2.141 1.844 .24195

2.40 2.05 4.83 0.43 .87 .76 1.33 1.71 1.59 –
TrI 2.519 2.011 4.710 0.725 0.811 .530 1.190 1.822 1.627 .11158
isotropy 2.381 2.381 4.830 0.650 0.650 .604 1.174 1.650 1.650 .11059
STrTI 2.619 2.134 4.830 0.626 0.693 0.598 1.168 1.733 1.564 .09572

8.8 7.81 10.4 1.17 2.79 2.55 4.77 2.69 2.89 –
TrI 8.975 7.446 9.294 2.374 2.606 2.333 3.509 3.921 3.571 .19480
isotropy 8.696 8.696 10.400 1.979 1.979 2.159 4.379 2.790 2.790 .13472
STrTI 9.419 7.957 10.400 1.919 2.088 2.146 4.366 2.898 2.664 .12249

3 16.8 16.8 18.9 5.46 5.46 4.49 7.82 7.10 7.10 �
TrI 16.828 16.828 18.920 5.206 5.206 4.910 7.008 7.431 7.431 .04364

16.1 16.1 6.10 3.83 3.83 6.34 3.42 5.01 5.01 –
TrI 16.407 16.407 7.340 3.815 3.815 5.704 4.999 3.343 3.343 .14248

30.7 30.7 35.81 7.53 7.53 7.10 16.5 10.30 10.30 –
TrI 29.322 29.322 33.281 8.750 8.750 8.213 12.896 13.739 1.739 .14471

ch crystal, the measured moduli CM according to the quoted reference are reported on the first line whereas different
imations CAppr are reported on the other lines with the associated relative error ðkCAppr � CMk=kCMkÞ indicated in the last row.
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It is interesting to note that, for some cases (e.g. for Potassium pentaborate KB5O8 Æ4H2O), the error
attached to the TrI model (4 parameters) is lower than that coming from use of a transverse isotropic
approximation (5 parameters). For some transverse isotropic materials (e.g. for Barium titanate BaTiO3),
the TrI model yields a very low error (�4%). Taking account of the experimental uncertainty, it can be
more convenient to use for it the Green function derived for the TrI model (see below) which looks simpler
than the one attached to transverse isotropic.
5. New analytical derivation of Green functions

In this section, we give closed form expressions of the Green tensor for an infinite or semi-infinite med-
ium for the TrI model (transformed from isotropy, see (62) or (64)).

5.1. Infinite medium

The elastic moduli C are given by (61) with D = P Æ PT symmetric and positive definite. The P-trans-
formed moduli ~C are isotropic, with Lamé coefficients k and l. The Green–Kelvin tensor for an infinite
body with such moduli is known to be
eGijð~x� ~x0Þ ¼ 1

4pl
dij

k~x� ~x0k �
1

4ð1� mÞ
~oijk~x� ~x0k

� �
ð78Þ
with m = k/[2(k + l)] and ~oið�Þ ¼ o
o~xi
ð�Þ. By replacing in (78) ~x; ~x0 and eG by their expression from (49) and

(58), with oið�Þ ¼ Rij
~ojð�Þ, R = (PT)�1, ~oið�Þ ¼ P jioið�Þ and qðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x �H � x
p

, H = D�1, we find (Pouya, 2000)
Gijðx� x0Þ ¼
ffiffiffiffiffiffiffi
jH j

p
4pl

H ij

qðx� x0Þ �
1

4ð1� mÞ oijqðx� x0Þ
� �

ð79Þ
If D has two identical eigenvalues (TITrI model (67)), a special case of transverse isotropy is obtained.
Eq. (79) specified for this case is consistent with the general expression of the Green tensor for transverse
isotropy given by Pan and Chou (1976), except for a mistake in this expression: the second member of Eq.
(18) in Pan and Chou (1976) must be multiplied by (c11/c33)1/4.

5.2. Semi-infinite body

The case of isotropy has been solved by Mindlin (1936). We could use this solution for an extension,
thanks to (58), to moduli C given by (61). Nevertheless, Mindlin�s solution is usually given (Mindlin,
1936; Mura, 1982; Bonnet, 1995) in a specific basis, with one direction normal to the plane boundary,
whereas, since we are interested with anisotropic elasticity, we need an intrinsic general expression. It
can be obtained with help of the following notation:
n ¼ x � n; n0 ¼ x0 � n; X ¼ x� x0; R1 ¼ kXk; R2 ¼ ðR2
1 þ 4nn0Þ1=2 ð80Þ
with n the unit outward normal to the isotropic half-space with Poisson�s ratio m. Then, according to Mura
(1982) , Mindlin�s solution reads
Gðx; x0Þ ¼ 1

16plð1� mÞ ½A1I þ A2X � X þ A3X � nþ A4n� X þ A5n� n� ð81Þ
with I the second-order unit tensor and the definitions
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A1 ¼
3� 4m

R1

þ 1

R2

þ R2
2 � R2

1

2R3
2

þ 4ð1� mÞð1� 2mÞ
R2 þ nþ n0

A2 ¼
3� 4m

R3
2

þ 1

R3
1

� 6nn0

R5
2

� 4ð1� mÞð1� 2mÞ
R2ðR2 þ nþ n0Þ2

A3 ¼
12n2n0

R5
2

� 4ð1� mÞð1� 2mÞ
R2ðR2 þ nþ n0Þ2

ðR2 þ 2n0Þ

A4 ¼ �
12nn02

R5
2

þ 4ð1� mÞð1� 2mÞ
R2ðR2 þ nþ n0Þ2

ðR2 þ 2nÞ

A5 ¼
4ð1� mÞð1� 2mÞ
R2ðR2 þ nþ n0Þ2

½R2ðnþ n0Þ þ 4nn0� þ 8nn0ð1� 2mÞ
R3

2

þ 24n2n02

R5
2

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð82Þ
Let now the anisotropic half-space with the moduli (61) of the TrI model be defined by x Æ n P 0. It is trans-
formed by the tensor P such that P Æ PT = D into an isotropic half-space with the normal ~n transformed
from n by ~n ¼ kPT � nk�1

PT � n. Note that P can be chosen symmetric. The associated Green tensor eG is
then given by formulae (80)–(82) which depend on ~x; ~x0 and ~n. By use of (58) where ~x; ~x0 and ~n are known
functions of x; x0 and n, the expected Green tensor G is obtained. It reads
Gðx; x0Þ ¼
ffiffiffiffiffiffiffi
jH j

p
16plð1� mÞ ½B1H þ B2H � ðX � X Þ �H þ jB3H � ðX � nÞ þ jB4ðn� X Þ �H þ j2B5ðn� nÞ�

ð83Þ
where we have put
m ¼ k=½2ðkþ lÞ�; j ¼ ðn �D � nÞ�1=2

R�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X �H � X
p

; n� ¼ jx � n; n0� ¼ jx0 � n; R�2 ¼ ðR�21 þ 4n�n0�Þ1=2

(
ð84Þ
with H = D�1, and where the parameters Bi are defined from ðR�1;R�2; n
�; n0�; mÞ in the same way as Ai were

defined from (R1, R2, n, n 0, m) in (82).
Now again, we can focus on the particular case of the TITrI model (67) for which the symmetry axis is

normal to the plane boundary: this situation frequently occurs in soil mechanics for foundations problems
with different vertical and horizontal moduli for the soil. According to experimental data given by Boehler
(1975) , the TITrI model is well suited to the elastic anisotropy of various soils (Pouya and Reiffsteck, 2003).
The proposed transformation then reduces to the simple Eqs. (69) and can be conveniently used for extend-
ing known solutions of foundation problems for isotropic soils to media exhibiting this kind of anisotropy.
These problems usually make recourse to Boussinesq�s (1885) solution which is concerned with the special
case of Mindlin�s solution for a point force We3 applied on the plane boundary in the normal direction,
where e3 is also a symmetry axis for the anisotropy defined by (E1, E3, m) according to (67).
With a = (E3/E1)1/4, the transformation defined by (69), (68) and (52) of the classical Boussinesq�s solution
(Johnson, 1992) yields the solution of the Boussinesq problem for the considered anisotropy. Note that W is
transformed as F3 in (69), namely ~W ¼ W =a. In cylindrical coordinates of axis e3 (see Fig. 2a), and with the
notation
R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ z2

p



Fig. 2. (a) Point force on an infinite soil for the TITrI model; (b) rigid circular footing on an infinite soil for the TITrI model.
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this solution reads
uz ¼
W

4pla
2ð1� mÞ

R
þ z2

R3

	 

; ur ¼

Wa
4pl

�ð1� 2mÞr
RðRþ zÞ þ

rz

R3

	 


rzz ¼
�3W

2p
a3 z3

R5
; rrr ¼

Wa
2p

1� 2m
RðRþ zÞ �

3z

R3
1� z2

R2

� �	 


rrz ¼
�3W

2p
a3 rz2

R5
; rhh ¼

W ð1� 2mÞa
2p

z

R3
� 1

RðRþ zÞ

	 


8>>>>>>>>>><>>>>>>>>>>:
ð85Þ
The displacement field for a number of foundation problems in anisotropic soils with the properties (67)
can be easily derived from this basic solution. In addition, many results can be derived from the direct
transformation of known results for isotropic soils. For instance, the vertical displacement w of a rigid cir-
cular footing (Fig. 2b) for a half-space with the elastic properties (67) is derived directly through (69) from
the classical Boussinesq result for isotropic soils, namely
~w ¼ p
2

ð1� m2Þ
E

~p~R ð86Þ
and reads
w ¼ E3

E1

� �1=4 p
2

ð1� m2Þ
E3

pR ð87Þ
with E = E1: this is due to the fact that the transformation does not change the geometry of the problem
(half-space and circular footing with invariant radius) and leads to ~w ¼ aw, j = 1/a and ~p ¼ p=a2. Note that
a number of other similar problems, e.g. the solution for a trapezoidal embankment (Gray, 1936), which
derive from the basic Boussinesq solution, can be generalized in this way too.

5.3. Further extensions

All the above mentioned models of elastic anisotropy are reported in the diagram of Fig. 3 where each
model located at some level is a generalization of the models situated beneath. Ellipses bordered with a thin
line indicate cases for which the Green functions are already known whereas a thick border correspond to
cases for which it has been or can be derived through the proposed transformation. Dashed lines indicate
cases which cannot be correlated with those at a lower level by a linear transformation so that the Green
function cannot be derived in the same way.

Note that the number of parameters indicated on the diagram of Fig. 3 does not integrate the 3
rotational degrees of freedom (2 for axial symmetry cases) which should be added to the former (e.g. 12



SV1 
6 p 

SV2 
6 p 

TrTI
9 p 

STrTI, 6 p 

c11 , c22 , c33 , c12 , c13 , c44

TI, 5p 

c11 , c33 , c12 , c13 , c44

TrI, 4 p 

c11, c22, c33,, η 
E1 , E2 , E3 , ν

TITrI,  3 p 

c11, c33,, η 
E1, E3 , ν

I, 2 p 

c11, η 
E1 , ν

c22 = c11 

c12 = ηc11 ,  c13 = η(c11c33)
1/2 

c13=[(1-η)/2](c11c33)
1/2

c22 = c11 

E2 = E1 

Fig. 3. Diagram showing different anisotropic models and their mutual relations (SV1:
ffiffiffiffiffiffiffiffiffiffi
EðnÞ4

p
is ellipsoidal; SV2:

ffiffiffiffiffiffiffiffiffi
cðnÞ�4

p
is ellipsoidal;

TrI: transformed isotropy, SV1 \ SV2; I: isotropy; TI: transverse isotropy; TrTI: transformed TI; STrTI: symmetric transformed TI;
TITrI: transverse isotropic transformed isotropy, TrI \ TI).
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parameters instead of 9 for the TrTI model) in view of comparison with the maximum 21 parameters when
no symmetry is present.
6. Other extensions and conclusion

In view of illustrating the potential applicability of the proposed transformation, we have concentrated
on problems for which the geometry is invariant (point force in an infinite) or belongs to an invariant geom-
etry family (semi-infinite body). Another interesting domain of application is concerned with the general
solutions of the equilibrium equations for elasticity such as the solutions for stress or strain potentials
for which no geometrical aspect is present (Lamé�s potential or Galerkine�s, Papkovich�s (1932) and
Neuber�s (1934) solutions for isotropy, etc.).

Besides the ellipsoidal inclusion problem in an infinite medium, several isotropic solutions can be ex-
tended to anisotropy in a similar way, such as the point force in a layered medium (Benitez and Rosakis�s,
1987)or in one of the two joined semi-infinite solids (Rongved�s, 1955), or as the torsion of a cone
(Timoshenko, 1934; Lekhnitskii, 1963, p. 341) or the application of an axial compressive force on the apex
of a cone (Lekhnitskii, 1963, p. 383), etc. Nevertheless, for the latter case, in order to save the axial sym-
metry, the transformation must be restricted to an affinity along the cone axis and then to anisotropy of the
form (67). In addition to foundation problems for soil mechanics which have been illustrated above, we can
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also mention that the calculation of stress intensity factors for cracks in anisotropic media can be per-
formed with the same method (work in progress).

Two more conclusions can be drawn in view of further advances:

• we have mainly developed a particular simple solution of the general equations for the transformation of
an elastic boundary value problem into another one, namely linear transformations of the coordinates
and displacements. Many other applications are likely to be open for more general transformations,
including inhomogeneous ones. These possibilities still remain to be explored;

• the general form (9) and (10) of the considered transformations is a local one. Even in the restricted
framework of linear transformations, nonlocal (e.g. integral) formulations could have been considered
as well: this would have probably enlarged the finding of admissible transformations.
Appendix A. Relation between M and Q

This appendix refers to the end of Section 3, related to the connection which can exist between tensors M
and Q. Let us first notice that for every C, the tensor C defined by (47) has the symmetries Cikjl ¼
Ciklj ¼ Ckijl ¼ Cjlik, but is not always definite, i.e., it does not satisfy (48) necessarily. For instance, if C is
defined by c11 = c22 = c33 = c44 = c55 = c66 = c > 0, with all the other coefficients equal to zero, it is easy
to check that C is not definite. When C is isotropic, C is definite: as a matter of fact, if k and l are the Lamé
constants of C, then C is isotropic with Lamé constants �k ¼ l and �l ¼ ðkþ lÞ=2, and the inequalities l > 0
and 3k + 2l > 0 which express that C is definite imply also that �l > 0 and 3�kþ 2�l > 0:

Let us now suppose that C is such that C is definite. The right side of (42) is antisymmetric with respect to
(i, k) and the same property must hold for the left side; so:
Cikjl½QjmM ln � QlnMjm� ¼ 0 ðA:1Þ
Since C is definite, (A.1) implies
QjmM ln � QlnMjm þ QlmMjn � QjnMlm ¼ 0 ðA:2Þ
Multiplying both sides of (A.2) by (Q�1)nj leads to
Mlm ¼ ð1=3ÞðMQ�1ÞjjQlm ðA:3Þ
This means that M is proportional to Q. So we can write
MðxÞ ¼ qðxÞQðxÞ ðA:4Þ
Substitution of this expression of M in (42) shows that the left side of (42) vanishes and then that W(mn) must
be antisymmetric with respect to (m, n). The same property holds for its rotational. According to (37) and
(22):
r ^WðmnÞ ¼ vðmnÞ ¼ RðmÞ � n0ðnÞ � R0ðnÞ � nðmÞ ðA:5Þ
Substitution of (A.4) in (20) and (21) leads to:
n0ðnÞ ¼ qnðnÞ; R0ðnÞ ¼ qRðnÞ þ C : ðrq� nðnÞÞ ðA:6Þ
so that (A.5) reads
r ^WðmnÞ ¼ fqðRðmÞ � nðnÞ � RðnÞ � nðmÞÞg � f½C : ðrq� nðnÞÞ� � nðmÞg ðA:7Þ
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In (A.7), the first term between {} is antisymmetric in (m, n). For the whole expression to be antisymmetric,
the second term between {} must be antisymmetric too. So
½C : ðrq� nðnÞÞ� � nðmÞ þ ½C : ðrq� nðmÞÞ� � nðnÞ ¼ 0 ðA:8Þ
or, equivalently
Cijkl okqðQjmQln þ QjnQlmÞ ¼ 0 ðA:9Þ
Multiplication of both sides by (Q�1)mp(Q�1)np leads to
C � rq ¼ 0 ðA:10Þ

with Cik = Cipkp. Since C is well known to be symmetric and positive definite, (A.10) implies $q = 0, i.e., q

constant and so: "x 2 X, M(x) = qQ(x).
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